Advertisement

Journal of Statistical Physics

, Volume 7, Issue 3, pp 225–241 | Cite as

A kinetic theory of dense fluids

  • H. Ted Davis
Articles

Abstract

A new kinetic equation is developed which incorporates the desirable features of the Enskog, the Rice-Allnatt, and the Prigogine-Nicolis-Misguich kinetic theories of dense fluids. Advantages of the present theory over the latter three theories are (1) it yields the correct local equilibrium hydrodynamic equations, (2) unlike the Rice-Allnatt theory, it determines the singlet and doublet distribution functions from the same equation, and (3) unlike the Prigogine-Nicolis-Misguich theory, it predicts the kinetic and kinetic-potential transport coefficients. The kinetic equation is solved by the Chapman-Enskog method and the coefficients of shear viscosity, bulk viscosity, thermal conductivity, and self-diffusion are obtained. The predicted bulk viscosity and thermal conductivity coefficients are singular at the critical point, while the shear viscosity and self-diffusion coefficients are not.

Key words

Kinetic theory transport properties of dense fluid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Rice and P. Gray,The Statistical Mechanics of Simple Liquids, Wiley, New York (1966).Google Scholar
  2. 2.
    I. Prigogine, G. Nicolis, and J. Misguich,J. Chem. Phys. 43:4516 (1965).Google Scholar
  3. 3.
    J. Misguich, Ph.D. thesis, Université Libre de Bruxelles, 1968;J. Physique 30:221 (1969).Google Scholar
  4. 4.
    J. Palyvos, H. T. Davis, J. Misguich, and G. Nicolis,J. Chem. Phys. 49:4088 (1968).Google Scholar
  5. 5.
    S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gasen, Cambridge University Press, Cambridge (1939).Google Scholar
  6. 6.
    H. Reiss,Adv. Chem. Phys. IX:1 (1965).Google Scholar
  7. 7.
    G. Severne,Physica 31:877 (1965).Google Scholar
  8. 8.
    G. Dowling, Ph.D. Thesis, University of Minnesota, 1971.Google Scholar
  9. 9.
    G. Dowling and H. T. Davis,J. Chem. Phys. (to appear).Google Scholar
  10. 10.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York (1954).Google Scholar
  11. 11.
    J. H. Irving and J. G. Kirkwood,J. Chem. Phys. 18:17 (1950).Google Scholar
  12. 12.
    N. G. van Kampen,Phys. Rev. 135A:362 (1964).Google Scholar
  13. 13.
    J. G. Kirkwood, V. A. Lewinson, and B. J. Alder,J. Chem. Phys. 20:929 (1952).Google Scholar
  14. 14.
    J. Naghizadeh and S. A. Rice,J. Chem. Phys. 36:2710 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • H. Ted Davis
    • 1
  1. 1.Departments of Chemical Engineering and ChemistryUniversity of MinnesotaMinneapolis

Personalised recommendations