Journal of Statistical Physics

, Volume 7, Issue 3, pp 213–224 | Cite as

Nonclassical behavior of the van der Waals gas

  • F. W. Wiegel


The partition function of the van der Waals gas is represented by a functional integral which is evaluated by summing the value of the integrand over its absolute and all of its secondary maxima. This leads to a one-to-one correspondence with the Ising model with nearest-neighbor interactions only. Whereas the classical behavior of the van der Waals gas is due to the absolute maximum in function space, the nonclassical behavior is shown to derive from the combined contribution of all the secondary maxima. The relation of this work to inverse range expansions and to the droplet model of condensation is discussed.

Key words

Critical behavior van der Waals gas droplet model of condensation Ising model functional integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Lebowitz and O. Penrose,J. Math. Phys. 7:98 (1966).Google Scholar
  2. 2.
    N. G. van Kampen,Phys. Rev. 135:A362 (1964).Google Scholar
  3. 3.
    A. J. F. Siegert, inStatistical Mechanics at the Turn of the Decade, E. G. D. Cohen (ed.), Marcel Dekker, New York (1971), pp. 145–174.Google Scholar
  4. 4.
    J. B. Jalickee, F. W. Wiegel, and D. J. Vezzetti,Phys. Fluids 14:1041 (1971).Google Scholar
  5. 5.
    F. W. Wiegel, Ph.D. Thesis, Univ. of Amsterdam, 1973.Google Scholar
  6. 6.
    J. S. Langer,Ann. Phys. 41:108 (1967).Google Scholar
  7. 7.
    K. G. Wilson,Phys. Rev. B 4:3184 (1971).Google Scholar
  8. 8.
    M. Kac, G. E. Uhlenbeck, and P. C. Hemmer,J. Math. Phys. 4:216 (1963);J. Math. Phys. 4:229 (1963);5:60 (1964).Google Scholar
  9. 9.
    E. Helfand,J. Math. Phys. 5:127 (1964).Google Scholar
  10. 10.
    N. G. van Kampen,Physica 48:313 (1970).Google Scholar
  11. 11.
    P. C. Hemmer and E. Hiis Hauge,Phys. Rev. 133:A1010 (1964).Google Scholar
  12. 12.
    N. V. Vdovichenko,Soviet Phys. 20:477 (1965), reprinted in L. D. Landau and E. M. Lifshitz,Statistical Physics, 2nd ed., Pergamon Press, New York, 1968.Google Scholar
  13. 13.
    N. V. Vdovichenko,Soviet Phys. 21:350 (1965).Google Scholar
  14. 14.
    M. Kac and C. J. Thompson,J. Math. Phys. 10:1373 (1969).Google Scholar
  15. 15.
    C. J. Thompson, A. J. F. Siegert, and D. J. Vezzetti,J. Math. Phys. 11:1018 (1970).Google Scholar
  16. 16.
    M. E. Fisher,Physics 3:255 (1967);Rept. Prog. Phys. 30:731 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • F. W. Wiegel
    • 1
  1. 1.Instituut voor Theoretische FysicaUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations