Skip to main content
Log in

Frontogenesis and cross frontal circulation in a strong summertime cold front

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

The characteristics of a strong European summertime cold front are investigated using the wealth of synoptic observations, which were analysed by the dynamical initialization scheme of an operational meso-scale model. The study was also extended to forecasted fields.

Cross-sections perpendicular to the front, covering a dormain of more than 2000 km in the horizontal and 10 km in the vertical direction, bring out the basic parameters (as potential temperature and the components of the geostrophic and ageostrophic wind vectors), the ageostrophic crossfrontal circulation and all cross-frontal frontogenesis terms.

None of the many frontogenesis terms plays a dominant role, there is a concerted action of geostrophic and ageostrophic deformation and shear, of tilting and diabatic sources in producing a rather complex structure of total frontogenesis. The cross-sectional fields of all presented terms strongly underline the fact, that a front is not a line of discontinuity but a rather wide three-dimensional field phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldwin, D., Hsie, E. Y., Anthes, R. A., 1984: Diagnostic studies of a two-dimensional simulation of frontogenesis in a moist atmosphere.J. Atmos. Sci. 41, 2686–2700.

    Google Scholar 

  • Bannon, P. R., Mak, M., 1986: A diagnosis of moist frontogenesis with an analytic model.J. Atmos. Sci. 43, 2017–2022.

    Google Scholar 

  • Eliassen, A., 1962: On the vertical circulation in frontal zones.Geof. Publ.,24, 147–160.

    Google Scholar 

  • Ewenz, C. M., 1993: Die Rolle der Feuchte bei frontogenetischen Prozessen.Ber. Dtsch. Wetterdienstes,187, 186 pp.

    Google Scholar 

  • Ewenz, C. M., Kraus, H., 1990: An analytical exercise to elucidate quasi-geostrophic frontogenesis.Meteorol. Atmos. Phys.,42, 179–196.

    Google Scholar 

  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis.Ann. Rev. Fluid Mech.,14, 131–151.

    Google Scholar 

  • Hoskins, B. J., Bretherton, F. P. 1972: Atmospheric frontogenesis models: Mathematical formulation and solution.J. Atmos. Sci.,29, 11–37.

    Google Scholar 

  • Hoskins, B. J., Draghici, I., Davies, H. C. 1978: A new look at the ω-equation.Quart. J. Roy. Meteor. Soc. 104, 31–38.

    Google Scholar 

  • Hsie, E. Y., Anthes, R. A., Keyser, D., 1984: Numerical simulation of frontogenesis in a moist atmosphere.J. Atmos. Sci.,41, 2581–2594.

    Google Scholar 

  • Hsie, E. Y., Anthes, R. A. 1984: Simulations of frontogenesis in a moist atmosphere using alternative parameterizations of condensation and precipitation.J. Atmos. Sci.,41, 2701–2716.

    Google Scholar 

  • Huntrieser, H., Schiesser, H. H., Waldvogel, A. 1994: The synoptic and mesoscale environment of severe convective activity in Switzerland. Proceedings of the international symposium ‘The Life Cycles of Extratropical Cyclones’, Bergen, 27 June to 1 July 1994, Vol. III, 101–106.

    Google Scholar 

  • Keuler, K., Kerkmann, J., Kraus, H., Schaller, E., 1992: Orographical modification and large-scale forcing of a cold front.Meteorol. Atmos. Phys.,48, 105–130.

    Google Scholar 

  • Keyser, D., Pecnick, M. J., 1985a: A two-dimensional primitive equation model of frontogenesis forced by confluence and horizontal shear.J. Atmos. Sci. 42, 1259–1282.

    Google Scholar 

  • Keyser, D., Pecnick, M. J. 1985b: Diagnosis of ageostrophic circulations in a two-dimensional primitive equation model of frontogenesis.J. Atmos. Sci. 42, 1283–1305.

    Google Scholar 

  • Keyser, D., Pecnick, M. J., 1987: The effect of along-front temperature variation in a two-dimensional primitive equation model of surface frontogenesis.J. Atmos. Sci.,44, 577–604.

    Google Scholar 

  • Keyser, D., Reeder, M. J., Reed, R. J., 1988: A generalization of Petterssen's frontogenesis function and its relation to the forcing of vertical motion.Mon. Wea. Rev.,116, 762–780.

    Google Scholar 

  • Koch, S. E., Kocin, P. J. 1991: Frontal contraction processes leading to the formation of an intense narrow rainband.Meteorol. Atmos. Phys.,46, 123–154.

    Google Scholar 

  • Kraus, H. 1991: Comparison of frontogenetical structures for different cases of frontal development.DLR-Forschungs-Bericht, DLR-FB,91-30, 27–40.

    Google Scholar 

  • Kraus, H., 1992: Turbulence frontogenesis.Meterol. Atmos. Phys.,48, 309–315.

    Google Scholar 

  • Majewski, D., 1991: The Europa-Modell of the Deutscher Wetterdienst. Proc. ECMWF-Seminar “Numerical Methods in Atmospheric Models”, Reading 9–13 Sept. 1991, Vol. II, 147–191.

    Google Scholar 

  • Majewski, D., 1992: Europa-Modell Report W/F/44.40.00/ 92, Case Study of 21.7.1992. Deutscher Wetterdienst, Zentralamt, Offenbach, Federal Republic of Germany.

    Google Scholar 

  • McCallum, E., Waters, A. J., 1993: Severe thunderstorms over south-east England, 20/21 July 1992: Satellite and radar perspective of a mesoscale convective system.Weather,48, 198–208 and 213–215.

    Google Scholar 

  • Miller, J. E., 1948: On the concept of frontogenesis,J. Meteor.,5, 169–171.

    Google Scholar 

  • Ogura, Y., Portis, D. 1982: Structure of the cold front observed in SESAME-AVE III and its comparison with the Hoskins-Bretherton frontogenesis model.J. Atmos. Sci.,39, 2773–2792.

    Google Scholar 

  • Orlanski, I., Ross, B. B. 1977: The circulation associated with a cold front. Part I: Dry case.J. Atmos. Sci.,34, 1619–1633.

    Google Scholar 

  • Petterssen, S. 1935: Contribution to the theory of frontogenesis.Geophys. Publ.,11, 6, 27pp.

    Google Scholar 

  • Prenosil, Th., Becker, H. G., 1990: Das Boundary layer Modell des Geophysikalischen Beratungsdienstes der Bundeswehr. Ein regionales Wettervorhersageverfahren. Fachliche Mitteilungen des Amtes für Wehrgeophysik, Nr. 211.

  • Reeder, M. J., Smith, R. K. 1987: A study of frontal dynamics with application to the Australian summertime “Cool Change”.J. Atmos. Sci.,44, 687–705.

    Google Scholar 

  • Reeder, M. J., Keyser, D., Schmidt, B. D., 1991: Threedimensional baroclinic instability and summertime frontogenesis in the Australian region.Quart. J. Roy. Meteor. Soc.,117, 1–28.

    Google Scholar 

  • Ross, B. B., Orlanksi, I. 1978: The circulation associated with a cold front. Part II: Moist Case.J. Atmos. Sci. 35, 445–465.

    Google Scholar 

  • Sanders, F., 1955: An investigation of the structure and dynamics of an intense surface frontal zone.J. Meteor.,12, 542–552.

    Google Scholar 

  • Sawyer, J. S., 1956: On the vertical circulation of meteorological fronts and its relation to frontogenesis.Proc. Roy. Soc. London,A234, 346–362.

    Google Scholar 

  • Shutts, G. J., 1990: Dynamical aspects of the October storm, 1987: A study of a successful fine-mesh simulation.Quart. J. Roy. Meteor. Soc.,116, 1315–1347.

    Google Scholar 

  • Takayabu, I., 1986: Roles of the horizontal advection on the formation of surface fronts and on the occlusion of a cyclone developing in the baroclinic westerly jet.J. Meteor. Soc. Japan,64, 329–345.

    Google Scholar 

  • Tapp, R. G., 1988: Vertical motion diagnostics related toQ-vectors, and the reorganisation of a cold frontal system.Meteorol. Atmos. Phys.,39, 65–73.

    Google Scholar 

  • Volkert, H., Kurz, M., Majewski, D., Prenosil, T., Tafferner, A., 1992: The front of 8 October 1987 — Prediction of three mesoscale models.Meteorol. Atmos. Phys.,48, 179–191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 12 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prenosil, T., Thiel, D. & Kraus, H. Frontogenesis and cross frontal circulation in a strong summertime cold front. Meteorl. Atmos. Phys. 56, 181–196 (1995). https://doi.org/10.1007/BF01030136

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01030136

Keywords

Navigation