Skip to main content
Log in

Passive microwave and infrared structure of mesoscale convective systems

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

The precipitation structure of mature Mesoscale Convective Systems (MCS) is examined in both the midlatitudes and the tropics using SSM/I microwave measurements, geostationary satellite observations, and ground-based radar observations. Discussion includes qualitative comparisons between midlatitude and tropical MCS cases, with particular emphasis on the delineation of convective and stratiform regions and the characterization of microwave polarization difference temperatures in the MCSs. Implications are given regarding the importance of the vertical precipitation structure on top of the atmosphere (TOA) microwave temperatures and for rain retrieval algorithms using measurements from space.

Some of the principle findings include the ability of passive microwave brightness temperature measurements to distinguish stratiform and convective regions of MCSs for both tropical and midlatitude cases and over land and ocean backgrounds. Convective regions typically had low differences between the vertical and horizontal brightness temperatures while the stratiform regions have larger differences, and these differences are likely related to the spatial microphysical variations in the upper levels of the precipitation region. Several cases were found in midlatitudes and one case in the tropics where the lowest infrared (IR) brightness temperatures were displaced into the anvil region and were not colocated with the coldest microwave temperatures. Life cycle dependence of the displacement is suggested, but the SSM/I measurements with a maximum of twice daily coverage over the same location were inadequate to answer this question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R., Negri, A. J., 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall.J. Appl. Meteor.,27, 280–296.

    Google Scholar 

  • Alder, R., Mack, R., Prasad, N., Yeh, H., Hakkarinen, I., 1990: Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. Part I: Observations.J. Atmos. Oceanic Technol.,7, 377–391.

    Google Scholar 

  • Evans, K. F., Vivekanandan, J., 1990: Multiparameter, radar and microwave radiative transfer modeling of nonspherical atmospheric ice particles.IEEE Trans. Geoscience and Rem. Sens.,28, 423–437.

    Google Scholar 

  • Fritsch, J. M., Kane, R. J., Chelius, C. R., 1986: The contribution of mesoscale convective systems to the warmseason precipitation in the United States.J. Climate Appl. Meteor.,25, 1333–1345.

    Google Scholar 

  • Fulton, R., Heymsfield, G. M., 1991: Microphysical and radiative characteristics of convective clouds during COHMEX.J. Atmos. Sci.,30, 98–116.

    Google Scholar 

  • Grody, N. C. 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager.J. Geophys. Res.,96, 7423–7435.

    Google Scholar 

  • Grody, N. C., Ferraro, R. R., 1992: A comparison of passive microwave rainfall retrieval methods. Preprints,Sixth Conf. on Satellite Meteor. and Oceanography, Atlanta, G.A.: Amer. Metero. Soc., 60–65.

    Google Scholar 

  • Hakkarinen, I. M., Adler, R. F., 1988: Observations of precipitating convective systems at 92 and 183 GHz. Aircraft results.Meteorl., Atmos. Phys.,38, 164–182.

    Google Scholar 

  • Heymsfield, G. M., Blackmer, Jr., R. H., 1988: Satelliteobserved characteristics of Midwest severe thunderstorm anvils.Mon. Wea. Rev.,116, 2200–2224.

    Google Scholar 

  • Heymsfield, G. M., Fulton, R., 1988: Comparison of high-altitude remote aircraft measurements with the radar structure of an Oklahoma thunderstorm: Implications for precipitation estimation from space.Mon. Wea. Rev.,116, 1157–1174.

    Google Scholar 

  • Heymsfield, G. M., Fulton, R., 1992: Modulation of SMM/I microwave soil radiance by rainfall.Remote Sensing Environ.,39, 187–202.

    Google Scholar 

  • Heymsfield, G. M., Parsons, C., Dod, L. R., Miller, L., 1989: Planned ER-2 Doppler radar (EDOP) for studying convective storms and mesoscale phenomena. Preprints,24th Conf. on Radar Meteorology. Tallahassee, FL: Amer. Meteor. Soc., 581–584.

    Google Scholar 

  • Hollinger, J., Lo, R., Poe, G., Savage, R., Pierce, J., 1987:Special Sensor Microwave/Imager User's Guide. Washington, DC: Naval Research Laboratory, 120 pp.

    Google Scholar 

  • Houze, R. A., 1977. Structure and dynamics of a tropical squall line-system.Mon. Wea. Rev.,105, 1540–1567.

    Google Scholar 

  • Houze, R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics.J. Meteor. Soc. Jpn.,60, 396–410.

    Google Scholar 

  • Houze, R. A., 1987: Convective and stratiform precipitation in the tropics. In: Theon, J. S., Fugono, N. (eds.)Tropical Rainfall Measurements. Hampton, VA Deepak Publishing, 27–35.

    Google Scholar 

  • Houze, R. A., Hobbs, P. V., 1982: Organization and structure of precipitating cloud systems.Adv. Geophys.,24, 225–315.

    Google Scholar 

  • Houze, R. A., Smull, B. F., Dodge, P., 1990: Mesoscale organization of springtime rainstorms in Oklahoma.Mon. Wea. Rev.,118, 613–654.

    Google Scholar 

  • Jackson, T. J., Schmugge, T. J., Wang, J. R., 1982: Passive microwave sensing of soil moisture under vegetation canopies.Water Resources Res.,18, 1137–1142.

    Google Scholar 

  • Kummerow, C., Mack, R. A., Hakkarinen, I. M., 1989: A self-consistency approach to improve microwave rainfall estimation from space.J. Appl. Meteor.,28, 869–884.

    Google Scholar 

  • Maddox, R. A., 1980: Mesoscale convective complexes.Bull. Amer. Meteor. Soc.,61, 1374–1387.

    Google Scholar 

  • Martin, D. W., Suomi, V. E., 1972: A statellite study of cloud clusters, over the tropical North Atlantic Ocean.Bull. Amer. Meteor. Soc.,53, 135–156.

    Google Scholar 

  • MacAnelly, R. L., Cotton, W. R., 1986: Meso-beta-scale characteristics of an episode of meso-alpha-scale convective complexes.Mon. Wea. Rev.,114, 1740–1770.

    Google Scholar 

  • Miller, D., Fritsch, J. M., 1991: Mesoscale convective complexes in the western Pacific region.Mon. Wea. Rev.,119, 2978–2992.

    Google Scholar 

  • Mugnai, A., Smith, E. A., 1988: Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. Part I: Model description.J. Appl. Meteor.,27, 1055–1073.

    Google Scholar 

  • Ogura, Y., Liou, M. T., 1980: The structure of a midlatitude squall line: a case study.J. Atmos. Sci.,37, 553–567.

    Google Scholar 

  • Rutledge, S. A., Houze, Jr., R. A., Biggerstaff, M., Matejka, T., 1988: The Oklahoma-Kansas mesoscale convective system of 10–11 June 1985: Precipitation structure and single-Doppler radar analysis.Mon. Wea. Rev.,116, 1409–1430.

    Google Scholar 

  • Rutledge, S. A., Williams E. R., Keenan, T. D., 1992: The down under doppler and electricity experiment (DUNDEE): Overview and preliminary results.Bull. Amer. Meteor. Soc.,73, 3–16.

    Google Scholar 

  • Schmugge, T., Becker, F., 1991: Remote sensing observations for the monitoring of land-surface fluxes and water budgets. In: Schmugge, T., Andre, J. (eds.)Land Surface Evaporation: Measurement and Parameterization. Berlin, Heidelberg: Springer 337–347.

    Google Scholar 

  • Simpson, J., Adler, R. F., North, G. R., 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite.Bull. Amer. Meteor. Soc.,69, 278–295.

    Google Scholar 

  • Smith, E. A., Mugnai, A., 1988: Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. Part II: Results and analysis.J. Appl. Meteor.,27, 1074–1091.

    Google Scholar 

  • Spencer, R. W., 1986: A satellite 37GHz scattering-based method for measuring oceanic rain rates.J. Climate Appl. Meteor.,25, 754–766.

    Google Scholar 

  • Spencer, R. W., Goodman, H. M., Hood, R. E., 1989: Precipitation retrieval over land and ocean with SSM/I: Identification and characteristics of the scattering signal.J. Atmos. Oceanic Technol.,6, 254–273.

    Google Scholar 

  • Spencer, R. W., Olson, W. S., Rongzhang, W., Martin, D. W., Wienman, J. A., Santek, D. A., 1983: Heavy thunderstorms observed over land by the Nimbus 7 Scanning Multichannel Microwave Radiometer.J. Climate Appl. Meteor.,22, 1041–1046.

    Google Scholar 

  • STORM, 1983:The National STORM Program: Scientific and Technological Bases and Major Objectives. University Corporation for Atmospheric Research, Boulder, 524 pp.

    Google Scholar 

  • Wilheit, T., Chang, A., Rao, M., Rodgers, E., Theon, J., 1977: A satellite technique for quantitatively mapping rainfall rates over the oceans.J. Appl. Meteor.,16, 551–560.

    Google Scholar 

  • Wilheit T., Chang, A., King, J. L., Rodgers, E. B., Nieman, R. A., Krupp, B. M., Milman, A. S., Stratigos, J. S., Siddalingaiah, H., 1982: Microwave radiometric observations near 19.35, 92, and 183 GHz of precipitation in tropical storm Cora.J. Appl. Meteor.,21, 1137–1145.

    Google Scholar 

  • Yeh, H., Prasad, N., Mack, R., Adler, R., 1990: Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. Part II: Model results.J. Atmos. Oceanic Technol.,7, 392–410.

    Google Scholar 

  • Zipser, E. J., 1988: The evolution of mesoscale convective systems: evidence from radar and satellite observations. In: Theon, J. S., Fugono N., (eds.)Tropical Rainfall Measurements. Hampton, Virginia, U.S.A.: Deepak Publishing, 159–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heymsfield, G.M., Fulton, R. Passive microwave and infrared structure of mesoscale convective systems. Meteorl. Atmos. Phys. 54, 123–139 (1994). https://doi.org/10.1007/BF01030055

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01030055

Keywords

Navigation