Meteorology and Atmospheric Physics

, Volume 54, Issue 1–4, pp 3–27 | Cite as

Active and passive microwave remote sensing of precipitating storms during CaPE. Part I: Advanced microwave precipitation radiometer and polarimetric radar measurements and models

  • J. Turk
  • J. Vivekanandan
  • F. S. Marzano
  • R. E. Hood
  • R. W. Spencer
  • F. J. LaFontaine


The Advanced Microwave Precipitation Radiometer (AMPR), an across-track scanning, four-channel (10.7, 19.35, 37.1, 85.5 GHz) total-power radiometer system, was instrumented aboard a NASA ER-2 aircraft during the 1991 CaPE (Convection and Precipitation/Electrification) project in central Florida. At a 20 km flight altitude, the AMPR provides fine-scale microwave imagery of Earth surfaces and its atmosphere, and is well-suited for diverse hydrological applications. During overflights of precipitation, coincident ground-based radar measurements were taken with the NCAR CP-2 dual-frequency, dual-polarization radar system. After remapping the radar data into a format compatible with the AMPR scanning geometry, the radar-derived profiles of rain, melting, and frozen hydrometeors are compared against the AMPR equivalent blackbody brightness temperature (TB) imagery. Microwave radiative transfer modeling procedures incorporating the radar-derived hydrometeor profiles were used to simulated the multifrequency AMPR imagery over both land and ocean background ER-2 flights. Within storm cores over land, columnar ice water paths up to 20 kgm−2 gradually depressed the 85 GHzTB as low as 100 K. The presence of tall vertical reflectivity columns encompassing > 20 kgm−2 columnar ice water path often produced 37 GHzTB<85 GHzTB directly over the core. Over ocean, the 10 GHz channel provided the clearest correlation with the rainfall amounts, whereas the 19 GHz channel saturated near 260 K past 10–15 mm hr−1 rain rate as determined by radar. Scattering by ice and melting ice at 37 GHz producedTB ambiguities over both raining and clear-ocean regions. Sensitivity to the columnar mixed phase region via the intermediate frequencies (19 and 37 GHz) is demonstrated and explained with the radar-derivedTB modeling. By superimposing vertical profiles of cloud liquid water (which this radar cannot measure) upon the radarinferred hydrometeor structure, additional information on the location of the peak cloud water and its amount relative to the vertical ice structure can be noted, along with a possible inference of the dominant ice particle size within the upper storm core.

These results suggest that as the resolution of passive radiometric measurements approaches dimensions where the antenna beams become increasingly filled by the cloud, precipitation retrieval via multifrequencyTB input is well-suited to a vertical profiling-type algorithm. This is further examined in Part II of this manuscript, where the radarderived vertical hydrometeor profiles are used to test the applicability of a multispectral cloud model-based approach to passive microwave precipitation retrieval from space.


Passive Microwave Cloud Liquid Water Polarimetric Radar Mixed Phase Region Freeze Hydrometeor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, R. F., Mack, R. A., Prasad, N., Yeh, H.-Y. M., Hakkarinen, I. M., 1990: Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. Part I: Observations.J. Atmos. Oceanic Technol. 7, 377–391.Google Scholar
  2. Adler, R. F., Yeh, H.-Y. M., Prasad, N., Tao, W.-K., Simpson, J., 1991: Microwave simulations of a tropical rainfall system with a three-dimensional cloud model.J. Appl. Meteor.,30, 924–953.Google Scholar
  3. Balakrishnan, N., Zrnic, D. S., 1990: Estimation of rain and hail rates in mixed-phase precipitation.J. Atmos. Sci.,47, 565–583.Google Scholar
  4. Bringi, V. N., Vivekanandan, J., Tuttle, J. D., 1986: Multiparameter radar studies in Colorado convective storms. Part 2: Hail detection studies.J. Atmos. Sci.,43, 2564–2577.Google Scholar
  5. Bringi, V. N., Hendry, A., 1990: Technology of polarization deversity radars for meteorology. Chapter 19a. In: Altas, D. (ed.)Radar in Meteorology. Boston: AMS, pp. 153–190.Google Scholar
  6. Chandrasekar, V., Atwater, C. A., Vonder Haar, T. H., 1991. Convective latent heating estimates from radar data.Proc. 1991 AMS Radar Conference, Paris, pp. 155–158.Google Scholar
  7. Evans, K. F., Vivekanandan, J., 1990: Multiparameter radar and microwave radiative transfer modeling of nonspherical atmospheric ice particles.IEEE Trans. Geosci. Remote Sensing,28, 423–437.Google Scholar
  8. Evans, K. F., Stephens, G. L., 1991: A new potarized atmospheric radiative transfer model.J. Quant. Spectrosc Radiat. Trans.,46, 413–423.Google Scholar
  9. Fulton, R., Heymsfield, G. M., 1991: Microphysical and radiative characteristics of convective clouds during COHMEX.J. Appl. Meteor.,30, 98–116.Google Scholar
  10. Gasiewski, A. J., Kunkee, D. B., 1992: Laboratory demonstration of electronic polarization basis rotation.Proc. IEEE MTT-S Int. Microwave Symp., Albuquerque, NM.Google Scholar
  11. Gasiewski, A. J., 1992: Numerical sensitivity analysis of passive EHF and SMMW channels to tropospheric water vapor, clouds, and precipitation.IEEE Trans. Geosci. Remote Sensing. 30, 859–870.Google Scholar
  12. Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager.J. Geophys. Res.,96, D4, 7423–7435.Google Scholar
  13. Hakkarinen, I. M., Adler, R. F., 1988: Observations of precipitating convective systems at 92 and 183 GHz: Aircraft results.Meteorol. Atmos. Phys.,38, 164–182.Google Scholar
  14. Herzegh, P. H., Jameson, A. R., 1992: Observing precipitation through dual-polarization radar measurements.Bull. Amer. Meteor. Soc.,73, 1365–1374.Google Scholar
  15. Jameson, A. R., 1991: The effect of drop size distribution variability on radiometric estimates of rainfall rates for frequencies from 3 to 10 GHz.J. Appl. Meteor.,30, 1025–1033.Google Scholar
  16. Kattawar, G. W., Hitzfelder, S. J., Binstock, J., 1973: An explicit form of the Mie phase matrix for multiple scattering calculations in theI,Q,U,V representation.J. Atmos. Sci.,30, 289–295.Google Scholar
  17. Kummerow, C., Hakkarinen, I., Pierce, H. F., Weinman, J. A., 1991: Determination of precipitation profiles from airborne passive microwave radiometric measurements.J. Atmos. Oceanic Technol.,8, 148–158.Google Scholar
  18. Liebe, H. J., 1985. An updated model for millimeter wave propagation in moist air.Radio Science,20, 1069–1089.Google Scholar
  19. Liu, S., Curry, J. A., 1992: Retrieval of precipitation from satellite microwave measurement using both emission and scattering.J. Geophys. Res.,97, D9, 9959–9974.Google Scholar
  20. Marshall, J. S., Gunn, K. L. S., 1952. Measurement of snow parameters by radar.J. Meteor.,9, 322–327.Google Scholar
  21. Mugnai, A., Cooper, H. J., Smith, E. A., Tripoli, G. J., 1990: Simulation of microwave brightness temperatures of an evolving hail storm at SSM/I frequencies.Bull. Amer. Meteor. Soc.,71, 2–13.Google Scholar
  22. Mugnai, A., Smith, E. A., Tripoli, G. J., 1993: Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part II: Emission source and generalized weighting function properties of a time dependent cloud-radiation model.J. Appl. Meteor.,32, 17–39.Google Scholar
  23. Prabhakara, C., Dalu, G., Liberti, G. L., Nucciarone, J. J., Suhasini, R., 1992: Rainfall estimation over oceans from SMMR and SSM/I microwave data.J. Appl. Meteor.,31, 532–552.Google Scholar
  24. Racette, P. E., Dod, L. R., Shiue, J. C., Adler, R. F., Jackson, D. M., Gasiewski, A. J., Zacharias, D. S., 1992: Millimeter wave imaging radiometer for cloud, precipitation, and atmospheric water vapor studies.Proc. IGARSS-92, Houston, TX, pp. 1426–1428.Google Scholar
  25. Russchenberg, H. W. J., Ligthart, L., 1991: Radar measurements of the dispersion factor of the gamma distribution of raindrops.Proc. Int. Workshop on Multiparameter Radar Applied to Microwave Propagation, Graz, Austria. pp. 141–147.Google Scholar
  26. Sachidananda, M., Zrnic, D. S., 1986: Differential propagation phase shift and rainfall rate estimation.Radio Science. 21, 235–247.Google Scholar
  27. Simpson, J., Adler, R. F., North, G., 1988: A Proposed Tropical Rainfall Measuring Mission (TRMM) satellite.Bull. Amer. Meteor. Soc.,69, 278–295.Google Scholar
  28. Smith, E. A., Mugnai, A., Cooper, H. J., Tripoli, G. J., Xiang, X., 1992: Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness temperature properties of a time-dependent cloud-radiation model.J. Appl. Meteor.,31, 506–531.Google Scholar
  29. Smith, E. A., Xiang, X., Mugnai, A., Hood, R. E., Spencer, R. W., 1993: High resolution microwave imaging of the Earth with the Advanced Microwave Precipitation Radiometer. Part II: Implications of high resolution measurements with a 10.7 GHz channel on precipitation retrieval.J. Atmos. Oceanic Technol., (in press).Google Scholar
  30. Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles.J. Climate Appl. Meteor.,23, 1258–1260.Google Scholar
  31. Spencer, R. W., Goodman, H. M., Hood, R. E., 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal.J. Atmos. Oceanic Technol.,6, 254–273.Google Scholar
  32. Spencer, R. W., Hood, R. E., LaFontaine, F., Smith, E. A., 1993: High resolution microwave imaging of the Earth with the Adanced Microwave Precipitation Radiometer. Part I: System description and sample imagery.J. Atmos. Oceanic Technol., (in press).Google Scholar
  33. Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution.J. Climate Appl. Meteor.,22, 1764–1775.Google Scholar
  34. Vivekanandan, J., Turk, J., Stephens, G. L., Bringi, V. N., 1990: Microwave radiative transfer studies using combined multiparameter radar and radiometer measurements during COHMEX.J. Appl. Meteor.,29, 561–585.Google Scholar
  35. Vivekanandan, J., Turk, J., Bringi, V. N., 1991: Ice water path estimation and characterization using passive microwave radiometry.J. Appl. Meteor.,30, 1407–1421.Google Scholar
  36. Vivekanandan, J., Raghavan, R., Bringi, V. N., 1992: Polarimetric radar modeling of mixtures of precipitation particles.IEEE Trans. Geosci. Remote Sensing. 31, 1017–1030.Google Scholar
  37. Vivekanandan, J., Turk, J., Bringi, V. N., 1993: Advanced Microwave Precipitation Radiometer (AMPR) and multiparameter radar comparisons of precipitation.IEEE Trans. Geosci. Remote Sensing,31, 860–870.Google Scholar
  38. Yeh, H.-Y. M., Prasad, N., Mack, R. A., Adler, R. F., 1990: Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. Part II: Model results.J. Atmos. Oceanic Technol.,7, 392–410.Google Scholar
  39. Zrnic, D. S., Balakrishnan, N., Ziegler, C. L., Bringi, V. N., Aydin, K., Matejka, T., 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system.J. Appl. Meteor.,32, 678–693.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • J. Turk
    • 1
  • J. Vivekanandan
    • 2
  • F. S. Marzano
    • 3
  • R. E. Hood
    • 4
  • R. W. Spencer
    • 4
  • F. J. LaFontaine
    • 5
  1. 1.Department of Electrical EngineeringColorado State UniversityFort CollinsUSA
  2. 2.Research Applications ProgramNational Center for Atmospheric ResearchBoulderUSA
  3. 3.Dipartimento di Ingegneria ElettronicaUniversità di Roma “La Sapienza”RomeItaly
  4. 4.Marshall Space Flight CenterNational Aeronautics and Space Administration, ES-43AlabamaUSA
  5. 5.NASA/Marshall Space Flight CenterUniversities Space Research AssociationHuntsvilleUSA

Personalised recommendations