Journal of Statistical Physics

, Volume 63, Issue 5–6, pp 1019–1033 | Cite as

Onsager relations for transport in inhomogeneous media

  • N. G. van Kampen


The nonlinear equations that describe transport in inhomogeneous media cannot be obtained by a straightforward extension of the known phenomenological equations for homogeneous media. One cannot therefore asserta priori that the Onsager reciprocity relations remain valid. Previously the correct equations have been obtained for three special models using kinetic theory. It is here shown that in these models the Onsager relations do indeed hold, provided that they are formulated with care.

Key words

Onsager relations inhomogeneous media nonlinear transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Onsager,Phys. Rev. 37:405,38:2265 (1931); H. B. G. Casimir,Rev. Mod. Phys. 17:343 (1945); H. B. Callen,Thermodynamics (Wiley, New York, 1960); S. R. de Groot and P. Mazur,Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).Google Scholar
  2. 2.
    N. G. van Kampen,Physica 67:1 (1973).Google Scholar
  3. 3.
    R. Stratton,Phys. Rev. 126:2002 (1962);J. Appl. Phys. 40:4582 (1969);IEEE Trans. Electron. Devices ED-19:1288 (1972); J. D. Gassaway,IEEE Trans. Electron. Devices ED-18:175 (1971); A. H. Marshak and D. Assaf III,Solid State Electron. 16:675 (1973); G. Baccarani and A. M. Mazzone,Solid State Electron. 18:469 (1975).Google Scholar
  4. 4.
    P. T. Landsberg and S. A. Hope,Solid State Electron. 19:173 (1976);20:421 (1977); M. Büttiker and R. Landauer, inNonlinear Phenomena at Phase Transitions and Instabilities, T. Riste, ed. (Plenum Press, New York, 1982), p. 111.Google Scholar
  5. 5.
    R. Landauer,Phys. Rev. A 12:636 (1975);Helv. Phys. Acta 56:847 (1983); M. Büttiker,Z. Phys. B 68:161 (1987).Google Scholar
  6. 6.
    N. G. van Kampen,IBM J. Res. Develop. 32:107 (1988).Google Scholar
  7. 7.
    N. G. van Kampen,Z. Phys. B 68:135 (1987);J. Phys. Chem. Solids 49:673 (1988).Google Scholar
  8. 8.
    R. Landauer,Phys. Rev. A 12:636 (1975).Google Scholar
  9. 9.
    N. G. van Kampen,J. Math. Phys. 29:1220 (1988).Google Scholar
  10. 10.
    N. G. van Kampen, inDisordered Solids, Structures and Processes, B. Di Bartolo, ed. (Plenum Press, New York, 1989).Google Scholar
  11. 11.
    H. A. Kramers,Physica 7:284 (1940); N. G. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).Google Scholar
  12. 12.
    M. E. Widder and U. M. Titulaer,Physica A 154:452 (1989).Google Scholar
  13. 13.
    U. M. Titulaer,Physica A 91:321 (1978);100:234, 251 (1980); J. L. Skinner and P. G. Wolynes,Physica A 96:561 (1979); U. Steiger,Physica A 125:1 (1984).Google Scholar
  14. 14.
    C. W. Gardiner,Handbook of Stochastic Methods (Springer, Berlin, 1983), p. 218; U. Geigenmüller, U. M. Titulaer, and B. U. Felderhof,Physica A 119:41, 53 (1983);120:635 (1983); N. G. van Kampen,Phys. Rep. 124:69 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • N. G. van Kampen
    • 1
  1. 1.Institute for Theoretical PhysicsUtrechtThe Netherlands

Personalised recommendations