Skip to main content
Log in

A forced 1-D convective cloud model

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

In order to improve prediction of some model output, an approach for the incorporation of dynamical entrainment and forced lifting into a 1-D cloud model is introduced.

It is shown that:

  1. 1.

    The new parameterization of entrainment processes causes oscillations in the magnitudes of the vertical velocities, rain water content and temperature perturbations.

  2. 2.

    The forced lifting component nonlinearly amplifies vertical velocities, temperature perturbations and rain water production. It causes descents of the local maxima (positive and negative) of the parameters mentioned.

  3. 3.

    Model values of cloud top heights and radar reflectivity maxima with new parameter of entrainment are in better agreement with observations than former ones. The rain water mixing ratio maxima under influence of forced lifting component coincide well with observed regions of rainfall maxima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, B., Sun, R. Y., 1985: Prediction by two onedimensional cloud models: A comparison.J. Climate Appl. Meteor.,24, 617–628.

    Google Scholar 

  • Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model.Mon. Wea. Rev.,105, 270–286.

    Google Scholar 

  • Asai, T., Kasahara, A., 1967: A theoretical study of the compensating downward motions associated with Cumulus clouds.J. Atmos. Sci.,24, 487–496.

    Google Scholar 

  • Battan, L. J., 1982: The variable nature of thunderstorm updrafts and precipitation. In:Cloud Dynamics (eds. Agee, E. M., Asai, T.), Dordrecht: D. Reidel, 233–242.

    Google Scholar 

  • Browning, K. A., 1977: The structure and mechanisms of hailstorms.Meteor. Monogr.,38, 1–43.

    Google Scholar 

  • Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front.Mon. Wea. Rev.,102, 140–156.

    Google Scholar 

  • Ćurić, M., 1980: Dynamics of a cold air outflow from the base of the thunderstorm. A simple model.J. Rech. Atmos.,14, 493–498.

    Google Scholar 

  • Ćurić, M., 1982: The development of the cumulonimbus cloud which moves along a valley. In:Cloud Dynamics (eds. Agee, E. M., Asai, T.). Dordrecht: D. Reidel, 259–272.

    Google Scholar 

  • Ćurić, M., 1985: Inclusion of the local orographic conditions in one dimensional numerical model of Cb cloud.Zbornik meteor. i hidrol. radova,12, 156–159.

    Google Scholar 

  • Ćurić, M., 1986: Areal characteristics of different precipitation type from Cumulonimbus in North-Western part of Serbia, Proceedings from 19 International Conference for Alpine Meteorology, Austrian Meteorological Service, Wien, 51–54.

  • Dye, Y. E., Jones, J. J., Winn, W. P., Cerni, T. A., Gardiner, B., Lamb, D., Pitter, R. L., Hallett, J., Sounders, C. P. R., 1986: Early electrification and precipitation in a small, isolated Montana cumulonimbus.J. Geophys. Res.,91, 1231–1247.

    Google Scholar 

  • Goff, R. C., 1976: Vertical structure of thunderstorm out-flows.Mon. Wea. Rev.,104, 1429–1440.

    Google Scholar 

  • Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulations.Meteor. Monogr.,32, Amer. Met. Soc., 84 pp.

    Google Scholar 

  • Lin, J. Y., Orville, H. D., 1969: Numerical modelling of precipitation and cloud shadow effects on mountain-induced cumuli.J. Atmos. Sci.,26, 1283–1298.

    Google Scholar 

  • Lin, Y. J., Farley, R. D., Orville, H. D., 1983: Bulk parameterization of the snow-field in a cloud model.J. Climate Appl. Meteor.,22, 1065–1092.

    Google Scholar 

  • List, R., Lozowski, E. P., 1970: Pressure perturbations and buoyancy in convective clouds.J. Atmos. Sci.,27, 168–170.

    Google Scholar 

  • Locatelli, J. D., Hobbs, P. V., 1974: Fall speeds and masses of solid precipitation particles.J. Geophys. Res.,79, 2185–2197.

    Google Scholar 

  • Lopez, R. E., 1973: A parametric model of cumulus convection.J. Atmos. Sci.,30, 1354–1374.

    Google Scholar 

  • Miller, L. J., 1975: Internal airflow of a convective storm from dual-Doppler radar measurements.Pure Appl. Geophys.,113, 765–786.

    Google Scholar 

  • Musil, D. J., May, E. L., Smith, P. L., Sand, Jr. W. R., 1976: Structure of an evolving hailstorm, Part IV: Internal structure from penetrating aircraft.Mon. Wea. Rev.,104, 596–602.

    Google Scholar 

  • Newton, C. W., Newton, H. R., 1959: Dynamical interaction between large convective clouds and environment wind vertical shear.J. Meteor.,16, 483–496.

    Google Scholar 

  • Orville, H. D., Kopp, F. J., Myers, C. G., 1975: The dynamics and thermodynamics of precipitation loading.Pure. Appl. Geophys.,113, 983–1004.

    Google Scholar 

  • Ray, P. S., Ziegler, C. L., Bumgarner, W., Serafin, R. J., 1980: Single and multiple Doppler radar observations of tornadic storms.Mon. Wea. Rev.,108, 1607–1625.

    Google Scholar 

  • Srivastava, R. C., 1967: A study of the effect of precipitation on cumulus dynamics.J. Atmos. Sci.,24, 36–45.

    Google Scholar 

  • Wakimoto, M. R., 1982: The life cycle of thunderstorm gust fronts as viewed with doppler radar and rawinsonde data.Mon. Wea. Rev.,110, 1060–1082.

    Google Scholar 

  • Wang, Y. C., 1983: A quasi-one dimensional, time dependent and non precipitating cumulus cloud model. On the bemodal distribution of cumulus cloud height.J. Atmos. Sci.,40, 651–664.

    Google Scholar 

  • Weinstein, A. J., 1970: A numerical model of cumulus dynamics and microphysics.J. Atmos. Sci.,27, 246–255.

    Google Scholar 

  • Wisner, C., Orville, H. D., Myers, C., 1972: A numerical model of a hail-bearing cloud.J. Atmos. Sci.,29, 1160–1181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ćurić, M., Janc, D. A forced 1-D convective cloud model. Meteorl. Atmos. Phys. 39, 51–62 (1988). https://doi.org/10.1007/BF01029897

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029897

Keywords

Navigation