Meteorology and Atmospheric Physics

, Volume 55, Issue 3–4, pp 223–234 | Cite as

On similarity laws in regional climatology

  • G. Adrian
Article

Summary

Starting with a linear theory of the flow around and over mountains a similarity hypothesis of the wind field over complex terrain is formulated and tested by simulations with the numerical mesoscale model KAMM (Karlsruhe Atmospheric Mesoscale Model) and applied to observations of the orographically induced phenomenon “Moehlin-Jet”, which were performed and analysed by Dütsch (1985). Because this hypothesis combines parameters describing the state of the large scale flow with form parameters of the orography it can be used to regionalize large scale climatological informations to smaller scale. It allows to generalize observations of typical mesoscale phenomena like channeling in broad valleys or orographically induced jet-like currents.

Keywords

Climate Change Waste Water Water Pollution Linear Theory Wind Field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, G., 1992: Wake flows in the upper Rhine valley.Beitr. Phys. Atmos.,65, 147–156.Google Scholar
  2. Adrian, G., 1994: Zur Dynamik des Windfeldes über orographische gegliedertem Gelände.Belr. Deutscher Wetterdienst,188, 141 pp.Google Scholar
  3. Adrian, G., Fiedler, F., 1991: Simulation of unstationary wind and temperature fields over complex terrain and comparison with observations.Beitr. Phys. Atmos.,64, 27–48.Google Scholar
  4. Batchelor, G. K., 1953: The conditions for dynamical similarity of motions of a frictionless perfect-gas atmosphere.Quart. J. Roy. Meteor. Soc.,79, 224–235.Google Scholar
  5. Dütsch, H. U., 1985: Large-scale domination of a regional circulation during winter-time anticyclonic conditions.Meteorol. Rundsch.,38, 65–75.Google Scholar
  6. Dutton, J. A., 1976:The Ceaseless Wind, an Introduction to the Theory of Atmospheric Motion. New York: McGraw-Hill.Google Scholar
  7. Dutton, J. A., Fichtl, G. H., 1969: Approximate equations of motion for gases and liquids.J. Atmos. Sci.,26, 241–254.Google Scholar
  8. Egger, J., 1983: Kanalisierung des Windes in breiten Tälern.Ann. Meteor.,20, 465–481.Google Scholar
  9. Fiedler, F., 1983: Emige Characteristika der Strömung im Oberrheingraben. In: Fiedler, F., Höschele, K. (eds.)Prof. M. Diem zum 70. Geburtstag. Wiss. Ber. Inst. Met. u. Klimaf., Univ. Karlsruhe,4.Google Scholar
  10. Fieldler, F., Prenosil, T., 1980: Das MESOKLIP Experiment, Mesoskaliges Klimaprogramm im Oberrheintal.Wiss. Ber. Inst. Met. u. Klimaf., Univ. Karlsruhe, 1.Google Scholar
  11. Fortak, H., 1971:Meteorologie, Berlin, Darmstadt: Carl Habel Verlagsbuchhandlung.Google Scholar
  12. Long, R. R., 1953: Some aspects of the flow of stratified fluids. 1. A theoretical investigation.Tellus,5, 42–58.Google Scholar
  13. Queney, P., 1948: The problem of air flow over mountains: a summary of theoretical studies.Bull. Amer. Meteor. Soc.,29, 16–26.Google Scholar
  14. Smith, R. B., 1977: The steepening of hydrostatic mountain waves.J. Atmos. Sci.,34, 1634–1654.Google Scholar
  15. Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain.Tellus,32, 348–364.Google Scholar
  16. Wippermann, F., 1981: Air flow over and in broad valleys: channeling and counter-current.Beitr. Phys. Atmos.,54, 92–105.Google Scholar
  17. Wurtele, M. G., 1957: The three-dimensional lee wave.Beitr. Phys. Atmos.,29, 242–252.Google Scholar
  18. Zierep, J., 1982:Ähnlichkeitsgesetze und Modellregeln in der Strömungslehre. Karlsruhe: G. Braun.Google Scholar
  19. Zilitinkevich, S. S. (ed.), 1991:Modeling air-Lake Interaction, Physical Background. Research Reports in Physics. Berlin Heidelberg, New York: Springer.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • G. Adrian
    • 1
  1. 1.Institut für Meteorologie und KlimaforschungUniversität Karlsruhe, Kernforschungszentrum KarlsruheKarlsruheGermany

Personalised recommendations