Skip to main content
Log in

The influence of air-sea interaction on the development and motion of a tropical cyclone: Numerical experiments with a triply nested model

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

Tropical cyclone (TC)—ocena feedbacks are studied using a coupled tropical cyclone-ocean model consisting of an eightlayer triply-nested movable grid model of a TC and a three-layer primitive equation ocean model. The numerical results indicate that the TC-ocean interaction influences intensities, structures, and the trajectories of tropical cyclones. Two possible mechanisms, barotropic and baroclinic, influencing TC tracks under TC-ocean interaction are suggested. The barotropic mechanism is related to the changes of the vertically averaged TC structure, induced by the TC-ocean coupling. The baroclinic mechanism is related to the asymmetry of the condensation heating within the TC caused by the asymmetry of heat and moisture fluxes at the sea surface. This asymmetry arises due to the asymmetry in sea surface cooling relative to the storm center. The experiments indicate that the influence of TC-ocean interaction on the TC tracks is the greatest for the case of a zero background flow. In the case of a non-zero background flow the sensitivity of storm tracks to the coupling with the ocean decreases. It is found that the influence of the ocean coupling on the TC track is quite sensitive to the method of convective heating parameterization in the TC model. The TC-ocean interaction also results in a change of the amount and spatial distribution of precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Black, P. G., 1983: Ocean temperature change induced by tropical cyclones. Ph. D. dissertation. Pennsylvania State University, 277 pp.

  • Chang, S. W., 1979: The response of an axisymmetric model of tropical cyclone to local variations of sea surface temperature.Mon. Wea. Rev.,107, 662–666.

    Google Scholar 

  • Chang, S. W., Anthes, R. A., 1979: The mutual response of the tropical cyclone and the ocean.J. Phys. Oceanogr 9, 128–135.

    Google Scholar 

  • Charnock, H., 1955: Wind stress, on a water surface.Quart. J. Roy. Meteor. Soc.,81, 639–640.

    Google Scholar 

  • Deardorff, J. W., 1972: Parameterization of the planetary boundary layer for use in general circulation models.Mon. Wea. Rev.,100, 93–106.

    Google Scholar 

  • Deardorff, J. W., 1983: A multi-limit mixed layer entrainment formulation.J. Phys. Oceanogr.,13, 988–1002.

    Google Scholar 

  • DeMaria, M., Kaplan, J., 1993: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones.J. Climatol., (submitted).

  • Emanuel, K. E., 1988: The maximum intensity of hurricanes.J. Atmos. Sci.,45, 1143–1155.

    Google Scholar 

  • Emanuel, K. E., 1991: The theory of hurricanes.Ann. Rev. Fluid Mech.,23, 179–196.

    Google Scholar 

  • Falkovich, A. I. 1979:Dynamics and Energetics of the Intertropical Convergence Zone. Leningrad: Gidrometizdat, 247 p. (in Russian).

    Google Scholar 

  • Falkovich, A. I., 1986: A nested-grid scheme for predicting isolated vortex motion in a barotropic atmospheric model.Soviet Meteorology and Hydrology,9, 35–41.

    Google Scholar 

  • Falkovich, A. I. 1988: Adaptation of meteorological fields in a baroclinic model.Soviet Meteorology and Hydrology,n6, 29–42.

    Google Scholar 

  • Falkovich, A. I., Kulakov, A. V. 1986: On prediction of single vortex motion.Soviet Meteorology and Hydrology,n8, 58–65.

    Google Scholar 

  • Falkovich, A. I. Khain, A. P., Ginis, I. D., 1982: Studying of the development and motion of tropical cyclones by use of a coupled ocean-atmosphere model.Soviet Meterology and Hydrology,n2, 23–39.

    Google Scholar 

  • Fernando, H. J. S., 1991: Turbulent mixing in stratified fluid.Ann. Rev. Fluid Mech.,23, 455–493.

    Google Scholar 

  • Fiorino, M., Elsberry, R. L., 1989: Some aspects of vortex structure related to the tropical cyclone motion.J. Atmos. Sci.,47, 975–990.

    Google Scholar 

  • Ginis, I. D., Dikinov, Kh. Zh., Khain, A. P., 1989: A three-dimensional atmosphere-ocean model in the zone of a tropical cyclone.Dokl. Akad. Sci. USSR,307, 333–337.

    Google Scholar 

  • Ginis, I. D., Dikinov, Kh. Zh., 1989: Modeling of the typhoon Virginia (1978) forcing on the ocean.Soviet Meteorology and Hydrology,n7, 53–60.

    Google Scholar 

  • Hawkins, H. F., Rabsam, D. T., 1968: Hurricane Hilda, 1964. II. Structure and budgets of the hurricane on October 1., 1964.Mon. Wea. Rev.,96, 617–637.

    Google Scholar 

  • Hawkins, H. F., Imbembo, S. M., 1976: The structure of a small intense hurricane Inez, 1966:Mon. Wea. Rev.,104, 418–442.

    Google Scholar 

  • Hazelworth, J. B., 1968: Water temperature variations resulting from hurricanes.J. Geophys. Res.,73, 5105–5123.

    Google Scholar 

  • Holland, G. J., 1983: Tropical cyclone motion: environmental linteraction plus beta effect.Atmos. Sci. Paper,348, 47–47 pp.

    Google Scholar 

  • Holland, G. J., 1983: Tropical cyclones in the Australian/ Southwest Pacific region.Atmos. Sci. Paper,363, 264 pp.

    Google Scholar 

  • Holland, G. J., Merrill, R. T., 1984: On the dynamics of tropical cyclone structural changes.Quart. Roy. Meteor. Soc.,110, 723–745.

    Google Scholar 

  • Ivanov, V. N., Pudov, V. D., 1977: Structure of the thermal wake of typhoon Tess in the ocean and estimation of the certain energy-exchange parameters under storm condition. In collection: Typhoon-75, Gidrometeoizdat, Leningrad,1, 66–82.

    Google Scholar 

  • Johnson, A., Withee, J. W., 1978: Ocean data buoy measurements of hurricane Eloise.Mar. Technol. Soc. J.,12, 14–20.

    Google Scholar 

  • Jones, R. W., 1980: A three-dimensional tropical cyclone model with release of latent heat by the resolvable scales.J. Atmos. Sci.,37, 930–938.

    Google Scholar 

  • Khain, A. P., 1979: The 12-level axisymmetry numerical tropical cyclone model.Soviet Meteorology and Hydrology,n10, 23–37.

    Google Scholar 

  • Khain, A. P., 1980: Response of an axisymmetric tropical cyclone to changes of ocean surface temperature and evaporation from the sea surface.Soviet Meteorology and Hydrology,n10, 59–63.

    Google Scholar 

  • Khain, A. P., 1983: Numerical tropical cyclone model with a calculation of condensation by the resolvable scales.Izvestia, Atmospheric and Oceanic Physics,19, 341–346.

    Google Scholar 

  • Khain, A. P., 1984:Mathematical Modeling of Tropical Cyclones. Leningrad: Gidrometeoizdat, 247 pp. (in Russian).

    Google Scholar 

  • Khain, A. P., 1988: A Three-dimensional numerical model of tropical cyclone with allowance for the beta-effect.Izvestia, Atmospheric and Oceanic Physics,24, 266–271.

    Google Scholar 

  • Khain, A. P., Agreinich, E. A., 1978: Features of the boundary and the marine atmospheric surface layers in tropical cyclones.Soviet Meteorology and Hydrology n1, 24–34.

    Google Scholar 

  • Khain, A. P., Sutyrin, G. G. 1983:Tropical Cyclones and Their Interaction with the Ocean. Leningrad Gidrometizdat, 247 p. (in Russian).

    Google Scholar 

  • Khain, A. P., Ginis, I. D., 1991: The mutual response of a moving tropical cyclone and the ocean.Beitr. Phys. Atmos.,64/2, 125–142.

    Google Scholar 

  • Krishnamurty, T. N., Bedi, H. S., Yap, K. S., Oosterhof D., Rohaly, G., 1992: Recurvature dynamics of a typhoon.Meteorol. Atmos. Phys. 50, 105–126.

    Google Scholar 

  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow.J. Atmos. Sci.,31, 1232–1240.

    Google Scholar 

  • Kurihara, Y., Tripoli, G. J., Bender, M. A., 1979: Design of a movable nested-mesh primitive equation model.Mon. Wea. Rev.,107, 239–249.

    Google Scholar 

  • Leipper, D. L., 1967: Observed ocean conditions and hurricane Hilda, 1964.J. Atmos. Sci.,24, 182–196.

    Google Scholar 

  • Maeda, A., 1971: Changes of water temperature near ocean weather station “T” before and after passage a typhoon.J. Oceanogr. Soc. Jap.,27, 109–115.

    Google Scholar 

  • Marchuk, G. I., 1982:Methods of Numerical Mathematics. New York: Springer, 510 p.

    Google Scholar 

  • Mathur, M. B., 1992: Tropical storm motion and structure in a fine mesh primitive equation model.Meteorol. Atmos. Phys.,50, 127–142.

    Google Scholar 

  • McFadden, J. D., 1967: Sea-surface temperature in the wake of hurricane Betsy (1965).Mon. Wea. Rev.,95, 299–302.

    Google Scholar 

  • Merrill, R. T., 1987: An experiment in statistical prediction of tropical cyclone intensity change. NOAA Tech. Memo. NWS NHC-34, 34 p.

  • Moss, M. S., Rosenthal, S. L., 1975: On the estimation of planetary boundary layer variables mature hurricanes.Mon. Wea. Rev. 193, 980–986.

    Google Scholar 

  • Neumann, C. J., 1993: Global overview. Global guide to tropical cyclone forecasting.World Meteor. Organiz. Geneva, Switzerland, 1.1–1.56.

    Google Scholar 

  • Orlanski, I., 1976. A simple boundary conditions for unbounded hyperbolic flows.J. Comput. Phys. 21, 251–269.

    Google Scholar 

  • Pekelis, E. M., Pressman, D. Y., 1982: Numerical implementation of radiation boundary conditions and their applications to the conditions of “open boundaries” for numerical integration of the equations of convection.Trudy Gidrometcentra USSR,249, 74–95.

    Google Scholar 

  • Perlroth, I., 1969: Effects of oceanographic media on equatorial Atlantic hurricanes.Tellus,21, 230–244.

    Google Scholar 

  • Pressman, D. Y., 1968: Integration of complete equations of short-range weather forecasting according to explicit differential schemes.Trudy Gidrometcentra USSR,16, 3–18.

    Google Scholar 

  • Price, J. F., 1981: Upper ocean response to a hurricane.J. Phys. Oceanogr. 11, 153–175.

    Google Scholar 

  • Ramage, C. S., 1972: Interaction between tropical cyclones and the China Sea.Weather,27, 484–494.

    Google Scholar 

  • Raymond, W. H., Kuo, H. L., 1984: A radiation boundary condition for multi-dimensional flows.Quart. J. Roy. Meteor. Soc.,110, 535–552.

    Google Scholar 

  • Rosenthal, S. L., 1978: Numerical simulation of tropical cyclone development with latent heat by the resolvable scales. I. Model description and preliminary results.J. Atmos. Sci.,35, 258–271.

    Google Scholar 

  • Sanford, T. B., Black, P. G., Haustein, J., Fenney, J. W., Forristal, G. Z., Price, J. F., 1987: Ocean response to hurricanes. Part 1: Observations.J. Phys. Oceanogr. 17, 2065–2083.

    Google Scholar 

  • Sanford, T. B., Black, P. G., Haustein, J., Fenney, J. W., Forristal, G. Z., Price, J. F., 1987: Ocean response to hurricanes. Part 1: Observations.J. Phys. Oceanogr.,17, 2065–2083.

    Google Scholar 

  • Shay, L. K., Black, P. G., Mariano, A. J., Hawkins, J. D., Elsberry, R. L., 1992: Upper ocean response to Hurricane Gilbert.J. Geophys. Res.,97, 20227–20248.

    Google Scholar 

  • Schopf, P. S., Cane, M. A., 1983: On equatorial dynamics, mixed layer physics and sea surface temperature.J. Phys. Oceanogr.,13, 917–935.

    Google Scholar 

  • Shapiro, L. J., 1992: Hurricane vortex motion and evolution in a three-layer model.J. Atmos. Sci.,49, 140–153.

    Google Scholar 

  • Shapiro, L. J., Ooyama, K. V., 1990: Barotropic vortex evolution on a beta-plane.J. Atmos. Sci.,47, 170–187.

    Google Scholar 

  • Shuman, F. G., Hovermale, J. B., 1968: An operational sixlayer primitive equation model.J. Appl. Meteor.,7, 525–547.

    Google Scholar 

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part 1: The basic experiment.Mon. Wea. Rev.,91, 99–164.

    Google Scholar 

  • Stein, U., Alpert, P., 1991: Inclusion of sea moisture flux in the Anthes-Kuo cumulus parameterization.Beitr. Phys. Atmos.,64/2, 231–244.

    Google Scholar 

  • Sutyrin, G. G., 1987: The beta effect and the evolution of an intense vortex on a rotating globe.Sov. Phys. Dokl.,32, 791–793.

    Google Scholar 

  • Sutyrin, G. G., Khain, A. P., Agrenich, E. A., 1979: Interaction of the boundary layers of the ocean and atmosphere in a tropical cyclone.Soviet Meteorology and Hydrology,n2, 37–46.

    Google Scholar 

  • Sutyrin, G. G., Khain, A. P., 1984: On the effect of air—ocean interaction on intensity of moving tropical cyclone. Izvestia,Atmospheric and Oceanic Physics,20, 787–794.

    Google Scholar 

  • Tuleya, R. E., Kurihara, Y., 1982: A note on the sea surface temperature sensitivity of a numerical model of tropical storm genesis.Mon. Wea. Rev.,110, 2065–2071.

    Google Scholar 

  • Weatherford, C. L., Gray, W. M., 1988: Typhoon structure as revealed by aircraft reconnaissance. Part 1: Data analysis and climatology.Mon. Wea. Rev.,116, 1032–1056.

    Google Scholar 

  • Willoughby, H. E., 1988: Linear motion of ahallow-water barotropic vortex.J. Atmos. Sci.,45, 1906–1928.

    Google Scholar 

  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones.J. Atmos. Sci.,47, 242–264.

    Google Scholar 

  • Willoughby, H. E., 1992: Linear motion of a shallow-water barotropic vortex as an initial value problem.J. Atmos. Sci.,49, 2015–2031.

    Google Scholar 

  • Willoughby, H. E., Chelmow, M. B., 1982: Objective determination of hurricane tracks from aircraft observations.Mon. Wea. Rev.,110, 1298–1305.

    Google Scholar 

  • Wright, R., 1969: Temperature structure across the Kurosio before and after typhoon Shirly.Tellus. 21, 409–413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falkovich, A.I., Khain, A.P. & Ginis, I. The influence of air-sea interaction on the development and motion of a tropical cyclone: Numerical experiments with a triply nested model. Meteorl. Atmos. Phys. 55, 167–184 (1995). https://doi.org/10.1007/BF01029825

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029825

Keywords

Navigation