Skip to main content
Log in

Objective measures of the information density of satellite data

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

We propose and objective method whereby the density of Shannon's “information” associated with the retrieval of a profile of atmospheric variables from satellite-derived infrared radiance measurements may be estimated. The technique is a natural extension of one we previously proposed to estimate the effective data density in a profile. We test the method in a comparison of simulated satellite instruments to show that the method does indeed provide an objective summary of the spatial distribution of each instrument's information content. We propose that further extensions of the method be developed to include other more traditional data sources in a fully three-dimensional scheme. We also note that analogous and compatible methods may be used to diagnose the information content of meteorological analysis and forecast fields relative to the information contained in the covariance, at the appropriate season, of the corresponding climate fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Conrath, B. J., 1972: Vertical resolution of temperature profiles obtained from remote radiation measurements.J. Atmos. Sci.,29, 1262–1271.

    Google Scholar 

  • Dudewicz, E. J., 1976:Introduction to Statistics and Probability. New York: Holt, Rinehart and Winston, 512pp.

    Google Scholar 

  • Eyre, J. R., 1989a: Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: Theory and simulation for TOVS data.Quart. J. Roy. Meteor. Soc.,115, 1001–1026.

    Google Scholar 

  • Eyre, J. R., 1989b: Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. II: Application to TOVS data.Quart. J. Roy. Meteor. Soc.,115, 1027–1037.

    Google Scholar 

  • Eyre, J. R., 1990: The information content of data from satellite sounding systems: a simulation study.Quart. J. Roy. Meteor. Soc.,116, 401–434.

    Google Scholar 

  • Foster, M., 1961: An application of Wiener-Kolmogorov smoothing theory to matrix inversion.J. Soc. Ind. Appl. Math.,9, 387–392.

    Google Scholar 

  • Huang, H.-L., Smith, W. L., Woolf, H. M., 1992: Vertical resolution and accuracy of atmospheric infrared sounding spectrometers.J. Appl. Meteor.,31, 265–274.

    Google Scholar 

  • Khinchin, A. I., 1957:Mathematical foundations of Information Theory. New York: Dover, 123pp.

    Google Scholar 

  • Mateer, C. L., 1965: On the information content of Umkehr observations.J. Atmos. Sci.,22, 370–381.

    Google Scholar 

  • Menke, W., 1984:Geophysical Data Analysis: Discrete Inverse Theory. New York: Academic Press, 160pp.

    Google Scholar 

  • Menzel, W. P., Purdom, J. F. W., 1994: Introducing GOES-I: the first of a new generation of geostationary operational environmental satellites.Bull. Amer. Meteor. Soc.,75, 757–781.

    Google Scholar 

  • Peckham, G., 1974: The information content of remote measurements of the atmospheric temperature by satellite IR radiometry and optimum radiometer configurations.Quart. J. Roy. Meteor. Soc.,100, 406–419.

    Google Scholar 

  • Purser, R. J., Huang, H.-L., 1993: Estimating the effective data density in a satellite retrieval or an objective analysis.J. Appl. Meteor.,32, 1092–1107.

    Google Scholar 

  • Rodgers, C. D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation.Rev. Geophys. Space Phys.,14, 609–624.

    Google Scholar 

  • Shannon, C. E., 1949: Communication in the presence of noise.Proc. I.C.E.,37, 10–21.

    Google Scholar 

  • Shannon, C. E., Weaver, W., 1949:The Mathematical Theory of Communication. Urbana, Ill; University of Illinois Press.

    Google Scholar 

  • Smith, W. L., Revercomb, H. E., Howell, H. B., Woolf, H. M., 1983: HIS—A satellite instrument to observe temperature and moisture profiles with high vertical resolution. Fifth conference on Atmospheric Radiation, Baltimore, Maryland.Amer. Meteor. Soc., Oct 1–9

    Google Scholar 

  • Smith, W. L., Revercomb, H. E., LaPorte, D. D., Sromovsky, L. A., Silverman, S., Woolf, H. M., Howell, H. B., Knuteson, R. O., Huang, H.-L., 1990: GHIS—The GOES High Resolution Interferometer Sounder.J. Appl. Meteor.,29, 1189–1204.

    Google Scholar 

  • Tikhonov, A. N., 1963: On the solution of incorrectly stated problems and a method of regularization.Dokl. Acad. Nauk. SSSR,151, 501.

    Google Scholar 

  • Twomey, S., 1963: On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature.J. Ass. Comput. Mach.,10, 97–101.

    Google Scholar 

  • Wahba, G., 1985: Design criteria and eigensequence plots for satellite-computed tomography.J. Atmos. Oceanic Technol.,2, 125–132.

    Google Scholar 

  • Wark, D., Fleming, H., 1966: Indirect measurements of atmospheric temperature profiles from satellites.Mon. Wea. Rev.,94, 351–362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H.L., Purser, R.J. Objective measures of the information density of satellite data. Meteorl. Atmos. Phys. 60, 105–117 (1996). https://doi.org/10.1007/BF01029788

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029788

Keywords

Navigation