Skip to main content
Log in

Enhanced cold front propagation due to turbulent mixing

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

The influence of turbulent friction on the propagation of cold fronts is investigated by numerical simulations using a two-dimensional mesoscale model. We compare the frictional effect with the effects of large-scale shear forcing and energy conversion at the earth's surface and discuss the synergic effect of all three mentioned processes. There is no pure superposition of these effects indicating that nonlinear interaction plays a role. In addition it is possible to show that—depending on the along-front jet—friction does not necessarily slow down the front but can also accelerate it. The direction of the along-front jet within the planetary boundary layer (PBL) is crucial for that question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arritt, R. W., 1987: The effect of water surface temperature on lake-breezes and thermal internal boundary layers.Bound.-Layer Meteor.,40, 101–125.

    Google Scholar 

  • Becker, A., 1990:Initialisierung der Querzirkulation für das Bonner-Front-Skala-Modell. Diplomarbeit, Meteorologisches Institut der Universität Bonn, 128 pp.

  • Becker, A., 1994: The Influence of Turbulence and Soil Properties on the Shape and Development of a Cold Front. Proceedings of the international symposium ‘The Life Cycles of Extratropical Cyclones’, Bergen, 27 June to 1 July 1994, Vol. III, 14–18.

    Google Scholar 

  • Becker, A., 1995: Die Rolle der Turbulenz und des Bodens bei frontogenetischen Prozessen.Ber. Dtsch. Wetterdienstes,185, 163 pp.

    Google Scholar 

  • Becker, A., Kraus, H., Ewenz, C. M., 1996: Frontal Substructures within the planetary boundary layer.Bound.-Layer Meteor.,78, 165–190.

    Google Scholar 

  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere.J. Geophys. Res.,67, 3095–3102.

    Google Scholar 

  • Bond, N. A., Fleagle, R. G., 1985: Structure of a cold front over the ocean.Quart. J. Roy. Meteor. Soc.,111 739–759.

    Google Scholar 

  • Browning, K. A., Harrold, T. W., 1970. Air motion and precipitation growth at a cold front.Quart. J. Roy Meteor. Soc.,96, 369–389.

    Google Scholar 

  • Burk, S. D., 1984: The generation turbulent transfer and deposition of the sea-salt aerosol.J. Atmos. Sci.,41, 3040–3051.

    Google Scholar 

  • Businger, J. A., Miyake, M., Dyer, A. J., Bradley, E. F., 1967: On the direct determination of turbulent heat flux near the ground.J. Appl. Meteor.,6, 1025–1031.

    Google Scholar 

  • Dunst, M., Rhodin, A., 1990: On the influence of frictional effects on surface fronts.Beitr. Phys. Atmos.,63, 232–242.

    Google Scholar 

  • Eliassen, A., 1962: On the vertical circulation in frontal zones.Geof. Publ.,24, 147–160.

    Google Scholar 

  • Ewenz, C. M., 1993: Die Rolle der Feuchte bei frontogenetischen Prozessen.Ber. Dtsch. Wetterdienstes,187, 186pp.

    Google Scholar 

  • Ewenz, C. M., Keuler, K., Kraus, H., Schaller, E., 1996: The diabatic modification of a developing cold front in different large-scale forcing fields.Beitr. Phys. Atmos.,69, 431–448.

    Google Scholar 

  • Hedley, M., Yau, M. K., 1988: Radiation boundary conditions in numerical modelling.Mon. Wea. Rev.,116, 1721–1736.

    Google Scholar 

  • Heimann, D., 1994: Frictional effects on cold fronts: geometric considerations.Beitr. Phys. Atmos.,67, 97–102.

    Google Scholar 

  • Helfand, H. M., Labraga, J. C., 1988: Design of a nonsingular level 2.5 second-order closure model for the prediction of atmospheric turbulence.J. Atmos. Sci.,45, 113–132.

    Google Scholar 

  • Keuler, K., Kerkmann, J., Kraus, H., Schaller, E., 1992: Orographical modification and large scale forcing of a cold front.Meteorol. Atmos. Phys.,48, 105–130.

    Google Scholar 

  • Keyser, D., Pecnick, M. J., 1985: Diagnosis of ageostrophic circulations in a two-dimensional primitive equation model of frontogenesis.J. Atmos. Sci.,42, 1283–1305.

    Google Scholar 

  • Kraus, H., 1995: Das neue Bild von atmosphärischen Fronten.Erdkunde,49(2), 81–105.

    Google Scholar 

  • Marchuk, G. I., 1974: In: Arakawa, A., Mintz, Y. (eds.)Numerical Methods in Weather Prediction. New York: Academic Press, 277 pp.

    Google Scholar 

  • Mellor, G. L., Yamada, T., 1982: Development of a turbulence closure model for geophysical fluid problems.Rev. Geophys. Space Phys.,20, 851–875.

    Google Scholar 

  • Monin, A. S., Obukhov, M. A., 1954: Basics laws of turbulent mixing in the atmosphere near the ground.Turdy Akad. Nauk. SSSR Geofiz. Inst.,24(151), 163–187.

    Google Scholar 

  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer.J. Appl. Meteor.,9, 857–861.

    Google Scholar 

  • Rhodin, A., 1995: Interaction of a cold front with a seabreeze front: numerical simulations.Tellus,47A, 403–420.

    Google Scholar 

  • Savijärvi, H., 1992: On surface temperature and moisture prediction in atmospheric models.Beitr. Phys. Atmos.,65, 281–292.

    Google Scholar 

  • Sawyer, J. S., 1956: The vertical circulation at meteorological fronts and its relation to frontogenesis.Proc. Roy. Soc., London,A 234, 346–362.

    Google Scholar 

  • Shapiro, R., 1971: The use of a linear filtering as a parameterization of atmospheric diffusion.J. Atmos. Sci.,28, 523–531.

    Google Scholar 

  • Smolarkiewicz, P. K., 1983: A simple positive definite advection scheme with small implicit diffusion.Mon. Wea. Rev.,111, 479–486.

    Google Scholar 

  • Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion.J. Comput. Phys.,54, 325–362.

    Google Scholar 

  • Wallace, J. M., Hobbs, P. V., 1977:Atmospheric Science: An Introductory Survey. New York: Academic Press, 467 pp.

    Google Scholar 

  • Yamada, T., 1983: Simulations of nocturnal drainage flows by aq 2l turbulence closure model.J. Atmos. Sci.,40, 91–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 12 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, A., Keuler, K., Ewenz, C.M. et al. Enhanced cold front propagation due to turbulent mixing. Meteorl. Atmos. Phys. 62, 201–214 (1997). https://doi.org/10.1007/BF01029702

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029702

Keywords

Navigation