Meteorology and Atmospheric Physics

, Volume 53, Issue 3–4, pp 161–183 | Cite as

Structure and evolution of a tropopause fold during GALE IOP-1: An eta model study

  • M. K. Ramamurthy
  • T. -Y. Xu


A fine-mesh regional model simulation of upper-level cyclogenesis is carried out to examine the structure and evolution of the accompanying tropopause fold and its relationship to the surface and upper-level cyclones. The initial state for the simulation, conducted using the 80-km, 16-level version of the National Meteorological Center Eta model, uses the Level III-b gridded dataset for 1200 UTC, 18 January 1986, during the First Intensive Observing Period (IOP-1) of the Genesis of Atlantic Lows Experiment (GALE) project.

Results are presented from a 48 hour integration of the model. The emphasis is on the examination of the synoptic scale evolution and structure of the upper-level cyclone and tropopause fold, both of which were successfully simulated in the model. The potential vorticity structure associated with a propagating jet-streak displayed distinctive structure, with its tilt reversing as the jet-streak moved around the base of an amplifying upper-level trough. In addition, the model simulates the intrusion of dry, stratospheric air containing high potential vorticity anomalies into the lower troposphere as well as subsidence warming when the folding of the tropopause occurs. the model also predicts upper-level frontogenesis as a result of a thermally indirect secondary circulation in the exit region of the jet-streak. The success of the model simulation is most likely the result of comprehensive physics and the fine grid resolution employed and, more importantly, the excellent distribution of subsynoptic scale initial data during the GALE project.


Potential Vorticity Secondary Circulation Gridded Dataset Vorticity Anomaly High Potential Vorticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthes, R. A., Kuo, Y. H., Baumhefner, D. P., Errico, R. M., Bettge, T. W., 1985: Predictability of mesoscale motions. In:Advances in Geophysics, vol. 28,Issues in Atmospheric and Oceanic Modelling, Part B: Weather Dynamics. Academic Press, 159–202.Google Scholar
  2. Arakawa, A., Moorthi, S., 1988: Baroclinic instability in vertically discrete systems,J. Atmos. Sci.,45, 1688–1707.Google Scholar
  3. Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis.Quart. J. Roy. Meteor. Soc. 112, 677–691.Google Scholar
  4. Betts, A. K., Miller, M. J., 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass datasets.Quart. J. Roy. Meteor. Soc.,112, 693–709.Google Scholar
  5. Black, T. L., 1988: The step-mountain, eta corrdinate regional model: A documentation. NOAA/NWS/NMC Washington, 47 pp. [NOAA/NWS/NMC Washington, Development Division, W/NMC2, WWB Room 204, Washington, DC 20233.]Google Scholar
  6. Bosart, L. F., 1970: Mid-tropospheric frontogenesis.Quart. J. Roy. Meteor. Soc.,96, 442–471.Google Scholar
  7. Brill, F., Uccellini, L. W., Manobianco, J., Kocin, P. J., Homan, J. H., 1991: The use of successive dynamic initialization by nudging to simulate cyclogenesis during GALE IOP 1.Meteorol. Atmos. Phys.,45, 15–40.Google Scholar
  8. Buzzi, A., Nanni, T., Tagliazucca, M., 1977: Mid-tropospheric frontal zones: Numerical experiments with an isentropic coordinate primitive equation model.Arch. Met. Geoph. Biokl.,A26, 155–178.Google Scholar
  9. Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern.Mon. Wea. Rev.,108, 1498–1509.Google Scholar
  10. Danielsen, E. F., 1968: Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity.J. Atmos. Sci.,25, 502–518.Google Scholar
  11. Davies, R., 1982: Documentation of the solar radiation parameterization in the GLAS climate model. NASA Technical Memorandum 93961, 57 pp. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771.]Google Scholar
  12. Davis, C. A., 1992: A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed cyclogenesis.Mon. Wea. Rev.,120, 2409–2428.Google Scholar
  13. Davis, C. A., Emanuel, K. A., 1991: Potential vorticity diagnostics of cyclogenesis.Mon. Wea. Rev.,119, 1929–1953.Google Scholar
  14. DiMego, G. J., 1988: The National Meteorological Center regional analysis system.Mon. Wea. Rev.,116, 977–1000.Google Scholar
  15. Dimego, G. J., Gerrity, J. P., Petersen, R. A., Rogers, E., 1989: Intermittent assimilation of emulated wind profiler data with the NMC Regional Data Assimilation System (RDAS).Preprints, Twelfth AMS Conference on Weather Analysis and Forecasting, Monterey, California, October 2–6, 1989.Google Scholar
  16. Dirks, R. A., Kuettner, J., Moore, J. A., 1988: Genesis of Atlantic Lows Experiment (GALE). An overview.Bull. Amer. Meteor. Soc. 69, 148–160.Google Scholar
  17. Harshvardhan, Corsetti, T. G., 1984: Longwave radiative parameterization for the UCLA/GLAS GCM. NASA Technical Memorandum 86072, 48 pp. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771.]Google Scholar
  18. Hines, K. M., Mechoso, C. R., 1991: Frontogenesis processes in the middle and upper troposphereMon. Wea. Rev.,119, 1225–1241.Google Scholar
  19. Hirschberg, P. A., Fritsch, J. M., 1991: Tropopause undulations and the development of extratropical cyclones. Part II: Diagnostic analysis and conceptual model.Mon. Wea. Rev.,119, 518–550.Google Scholar
  20. Hoke, J. E., Phillips, N. A., Dimego, G. J., Tuccillo, J. J., Sela, J. G., 1989: The regional analysis and forecast system of the National Meteorological Center.Wea. Forecasting,4, 323–334.Google Scholar
  21. Hoskins, B. J., McIntyre, M. E., Robertson, A. W., 1985: On the use and significance of isentropic potential vorticity maps.Quart. J. Roy. Meteor. Soc.,111, 877–946.Google Scholar
  22. Janjic, Z. I., 1979: Forward-backward scheme modified to prevent two-grid-interval noise and its application in sigma coordinate models.Contrib. Atmos. Phys.,52, 69–84.Google Scholar
  23. Janjic, Z. I., 1984: Nonlinear advection schemes and energy cascade on semi-staggered grids.Mon. Wea. Rev.,112, 1234–1245.Google Scholar
  24. Janjic, Z. I., 1990: The step-mountain coordinate: Physical package.Mon. Wea. Rev.,118, 1429–1442.Google Scholar
  25. Jusem, J. C., Atlas, R., 1991: Diagnostic evaluation of numerical model simulations using the tendency equation.Mon. Wea. Rev.,119, 2936–2955.Google Scholar
  26. Keyser, D., Pecnick, M. J., 1985a: A two-dimensional primitive equation model of frontogenesis forced by confluence and horizontal shear.J. Atmos. Sci.,42, 1283–1305.Google Scholar
  27. Keyser, D., Pecnick, M. J., 1985b: Diagnosis of ageostrophic circulations in a two-dimensional primitive equation model of frontogenesis.J. Atmos. Sci.,42, 1283–1305.Google Scholar
  28. Keyser, D., Shapiro, M. A., 1986: A review of the structure and dynamics of upper-level frontal zones.Mon. Wea. Rev.,114, 452–499.Google Scholar
  29. Kuo, Y.-H., Reed, R. J., Low-Nam, S., 1992: Thermal structure and airflow in a model simulation of an occluded marine cyclone.Mon. Wea. Rev.,120, 2280–2297.Google Scholar
  30. Larko, D. E., Uccellini, L. W., Krueger, A. J., 1986: Atlas of TOMS Ozone data collected during the Genesis of Atlantic Lows Experiment (GALE), 1986. NASA Technical Memorandum 87809, 96 pp. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771.]Google Scholar
  31. Manobianco, J., Uccellini, L. W., Brill, K. F., Kocin, P. J., 1991: Contrasting the impact of dynamic data assimilation on the numerical simulations of cyclogenesis during GALE IOP 10 and IOP 1.Meteorol. Atmos. Phys.,45, 41–63.Google Scholar
  32. Mellor, G. L., Yamada, T., 1974: A hierarchy of turbulence closure models for planetary boundary layers.J. Atmos. Sci.,31, 1791–1806.Google Scholar
  33. Mercer, T. J., 1987: GALE Data Users Guide. Available from GALE Data Center, Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA 19104.Google Scholar
  34. Mercer, T. J., Kreitzberg, C. W., 1986: Genesis of Atlantic Lows Experiment (GALE) Field Project Summary Available from GALE Data Center, Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA 19104.Google Scholar
  35. Mesinger, F., 1973: A method for construction of second-order accuracy difference schemes permitting no false two-grid interval wave in the height field.Tellus,25, 444–458.Google Scholar
  36. Mesinger, F., 1984: A blocking technique for representation of mountains in atmospheric models.Riv. Meteor. Aeronautica,44, 195–202.Google Scholar
  37. Mesinger, F., Janjic, Z. I., Nickovic, S., Gavrilov, D., Deaven, D. G., 1988: The step-mountain coordinate: Model description and performance for cases of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment.Mon. Wea. Rev.,116, 1493–1518.Google Scholar
  38. Mesinger, F., Black, T. L., 1992: On the impact on forecast accuracy of step-mountain (Eta) vs. Sigma coordinate.Meteorol. Atmos. Phys.,50, 47–60.Google Scholar
  39. Newton, C. W., Trevisan, A., 1984: Clinogenesis and frontogenesis in jet-stream waves. Part II: Channel model numerical experiments.J. Atmos. Sci.,41, 2735–2755.Google Scholar
  40. Parrish, D. F., 1989: Application of implicit normal mode initialization to the NMC Nested Grid Model. NMC Office Note 349 (Available from the National Meteorological Center, W/NMC22, World Weather Building, Room 204, Washington, DC 20233).Google Scholar
  41. Ramamurthy, M. K., Xu, T., 1993: Continuous data assimilation experiments with the NMC Eta model: A GALE IOP-1 case study.Mon. Wea. Rev. (in press).Google Scholar
  42. Reed, R. J., 1955: A study of a characteristic type of upper-level frontogenesis.J. Meteor.,12, 226–237.Google Scholar
  43. Reed, R. J., Sanders, F., 1953: An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field.J. Meteor.,10, 338–349.Google Scholar
  44. Reed, R. J., Stoelinga, M., Kuo, Y.-H., 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly developing marine cyclone.Mon. Wea. Rev.,120, 893–913.Google Scholar
  45. Robinson, W. A., 1989: On the structure of potential vorticity in baroclinic instability.Tellus,41A, 275–284.Google Scholar
  46. Rogers, E., DiMego, G. J., Gerrity, J. R., Petersen, R. A., Schmidt, B. D., Kann, D. M., 1990: Preliminary experiments using GALE observations at the National Meteorological Center.Bull. Amer. Meteor. Soc.,71, 319–333.Google Scholar
  47. Sanders, F., Bosart, L. F., Lai, C-Chieng., 1991: Initiation and evolution of an intense upper-level front.Mon. Wea. Rev.,119, 1337–1367.Google Scholar
  48. Shapiro, M. A., 1975: Simulation of upper-level frontogenesis with a 20-level isentropic coordinate primitive equation model.Mon. Wea. Rev.,103, 591–604.Google Scholar
  49. Shapiro, M. A., 1978: Further evidence of the mesoscale and turbulent structure of upper level jet stream-frontal zone systems.Mon. Wea. Rev.,106, 1100–1111.Google Scholar
  50. Shapiro, M. A., 1980: Frontogenesis and geostrophically forced secondary circulations in the vicinity of jetstream-frontal zone systems.J. Atmos. Sci.,38, 954–973.Google Scholar
  51. Shapiro, M. A., 1983: Mesoscale weather systems of the central United States. In: Anthes, R. A. (eds.),The National STORM Program: Scientific and Technological Bases and Major Objectives. University Corporation for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, 3.1–3.77.Google Scholar
  52. Temperton, C., 1988: Implicit normal mode initialization.Mon. Wea. Rev.,116, 1013–1031.Google Scholar
  53. Thorncroft, C. D., Hoskins, B. J., McIntyre, M. E., 1993: Two paradigms of baroclinic life-cycle behaviour.Quart. J. Roy. Meteor. Soc.,119, 17–55.Google Scholar
  54. Uccellini, L. W., Keyser, D., Brill, K. F., Wash, C. H., 1985: The Presidents' Day cyclone of 18–19 February 1979: Synoptic overview and analysis of the subtropical jet streak influencing the precyclogenetic period.Mon. Wea. Rev.,113, 962–988.Google Scholar
  55. Whitaker, J. S., Uccellini, L. W., Brill, K. F., 1988: A model-based diagnostic study of the rapid development phase of the President's Day clone.Mon. Wea. Rev.,116, 2337–2365.Google Scholar
  56. Young, M. V., Monk, G. A., Browning, K. A., 1987: Interpretation of satellite imagery of a rapidly deepening cyclone.Quart. J. Roy. Meteor. Soc.,113, 1089–1115.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. K. Ramamurthy
    • 1
  • T. -Y. Xu
    • 1
  1. 1.Department of Atmospheric SciencesUniversity of Illinois at Urbana-ChampaignUrbanaU.S.A.

Personalised recommendations