Radiophysics and Quantum Electronics

, Volume 14, Issue 8, pp 964–971 | Cite as

Nonlinear electrodynamics of narrow superconducting films

  • K. K. Likharev
Article

Conclusions

  1. 1.

    Narrow strips of superconducting thin films can serve as effective reactive nonlinear elements when they are sufficiently uniform (constant cross section along their length). The Q-factors of such elements can be made fairly high for frequencies right up to the beginning of the submillimeter range when they are cooled to temperatures amounting to 0.2 to 0.3 of the critical temperature.

     
  2. 2.

    The level of the reactive nonlinearity of the films changes. This conclusion is in agreement with the experimental results [4].

     
  3. 3.

    The noticeable portion of the resistive losses in films at high currents is associated with processes of relaxation of the order parameter.

     
  4. 4.

    Of the possible microwave systems using the film strips studied here, the most promising are parametric amplifiers and travelling-wave converters. This is related both to the possibility of realizing fairly long uniform film strips and to the increase in the propagation constant (proportional to (1+l l /lg)) when the running kinetic inductancel l increases.

     

Keywords

Thin Film Microwave Critical Temperature High Current Narrow Strip 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    K. K. Likharev, Izv. VUZ. Radiofiz.,14, No. 6, 909 (1971).Google Scholar
  2. 2.
    K. K. Likharev, Izv. VUZ. Radiofiz.,14, No. 6, 919 (1971).Google Scholar
  3. 3.
    V. L. Ginzburg and L. D. Landau, Zh. Éksperim. i Teor. Fiz.,20, No. 5, 1064 (1950).Google Scholar
  4. 4.
    J. I. Gittleman and B. Rosenblum, Proc. IEEE,52, No. 19, 1138 (1964); Phys. Rev.,137, Ser. II, No. 2A, 527 (1965).Google Scholar
  5. 5.
    P. De Gennes, Superconductivity of Metals and Alloys [Russian translation], Mir, Moscow (1968).Google Scholar
  6. 6.
    A. S. Klorfein and F. J. Yang, Trans. IEEE,54, No. 3, 89 (1966).Google Scholar
  7. 7.
    K. Rose and M. D. Sherill, Phys. Rev.,145, No. 1, 179 (1966).Google Scholar
  8. 8.
    I. O. Kulik, Zh. Éksperim. i Teor. Fiz.,57, No. 2, 600 (1969).Google Scholar
  9. 9.
    G. M. Eliashberg, Pis'ma v Zh. Éksperim, i Teor. Fiz.,11, No. 3, 186 (1970).Google Scholar
  10. 10.
    S. A. Peskovatskii, Zh. Éksperim, i Teor. Fiz.,58, No. 3, 897 (1970).Google Scholar
  11. 11.
    V. L. Ginzburg, Dokl. Akad. Nauk SSSR,118, No. 3, 464 (1958).Google Scholar
  12. 12.
    L. P. Gor'kov and G. M. Éliashberg, Zh. Eksperim. i Teor. Fiz.,54, No. 2, 612 (1968);55, No. 6, 2430 (1968); Pis'ma v Zh. Eksperim. i Teor. Fiz.,8, No. 6, 329 (1968).Google Scholar
  13. 13.
    E. Abrahams and T. Tsuneto, Phys. Rev.,152, No. 1, 416 (1966).Google Scholar
  14. 14.
    C. Caroli and K. Maki, Phys. Rev.,164, No. 2, 591 (1967).Google Scholar
  15. 15.
    V. N. Gubankov, K. K. Likharev, and N. M. Margolin, Abstracts of Papers Read at the Lomonosov Readings (Physics Section) [in Russian], Izd. MGU (1970), p. 89; Pis'ma v Zh. Éksperim. i Teor. Fiz.,11, No. 5, 246 (1970); Fiz. Tverd. Tela,13, No. 1, 125 (1971).Google Scholar
  16. 16.
    V. P. Galaiko Transactions LT-10, 2A [in Russian], Moscow (1967), p. 340.Google Scholar
  17. 17.
    J. Schrieffer, Theory of Superconductivity [Russian translation], Nauka, Moscow (1970).Google Scholar
  18. 18.
    K. Maki, Progr. Theor. Phys.,31, No. 5, 731 (1964).Google Scholar
  19. 19.
    Yu. N. Ovchinnikov, Zh. Éksperim. i Teor. Fiz.,56, No. 5, 1590 (1969).Google Scholar
  20. 20.
    P. B. Miller, Phys. Rev.,118, No. 4, 928 (1960).Google Scholar
  21. 21.
    V. V. Shmidt, Zh. Éksperim. i Teor. Fiz.,57, No. 6, 2095 (1969).Google Scholar
  22. 22.
    M. P. Kemoklidze and L. P. Kitaevskii, Zh. Eksperim. i Teor. Fiz.,50, No. 1, 243 (1966).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • K. K. Likharev

There are no affiliations available

Personalised recommendations