Theoretical and Mathematical Physics

, Volume 76, Issue 1, pp 718–724 | Cite as

Chiral fermions in d=11 supergravity with additional time dimensions

  • A. D. Popov


Additional Time Time Dimension Chiral Fermion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl.,1, 966 (1921); O. Klein, Z. Phys. B,37, 895 (1926).Google Scholar
  2. 2.
    E. Cremmer, B. Julia, and J. Scherk, Phys. Lett. B,76, 409 (1978); M. J. Duff, B. S. W. Nilsson, and C. N. Pope, Phys. Rep.,130, 1 (1986); I. Ya. Aref'eva and I. V. Volovich, Usp. Fiz. Nauk,146, 655 (1985); D. P. Sorokin and V. I. Tkach, Fiz. Elem. Chastits At. Yadra,18, 1035 91987).Google Scholar
  3. 3.
    J. H. Schwarz, Phys. Rep.,89, 223 (1982); M. B. Green and J. H. Schwarz, Phys. Lett. B,149, 117 (1984).Google Scholar
  4. 4.
    P. Nieuwenhuizen and N. P. Warner, Commun. Math. Phys.,99, 141 (1985); B. McInnes, Class. Quantum Grav.,2, 661 (1985).Google Scholar
  5. 5.
    A. Salam and J. Strathdee, Ann. Phys. (N.Y.),141, 316 (1982).Google Scholar
  6. 6.
    C. R. Lichnerovicz, Acad. Sci. Paris, Sar. A-B,257, 7 (1963).Google Scholar
  7. 7.
    P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, Nucl. Phys. B,258, 46 (1985).Google Scholar
  8. 8.
    H. Nicolai and C. Wetterich, Phys. Lett. B,150, 347 (1985); C. Wetterich, CERN-TH 4190/85, CERN (1985); S. Randjbar-Daemi and C. Wetterich, Phys. Lett. B,166, 65 (1986).Google Scholar
  9. 9.
    I. Ya. Aref'eva and I. V. Volovich, Teor. Mat. Fiz.,64, 329 (1985); I. Ya. Aref'eva and I. V. Volovich, “Kaluza-Klein theories and the signature for space-time,” Preprint TC/85/71, Trieste (1985); I. Ya. Aref'eva and I. V. Volovich, Nucl. Phys. B,274, 619 (1986).Google Scholar
  10. 10.
    Yu. S. Vladimirov, Frames of Reference in the Theory of Gravitation [in Russian], Énergoizdat, Moscow (1982); A. D. Sakharov, Zh. Eksp. Teor. Fiz.,87, 375 (1984).Google Scholar
  11. 11.
    I. Ya. Aref'eva and I. V. Volovich, Pis'ma Zh. Eksp. Teor. Fiz.,41, 535 (1985); I. Ya. Aref'eva and I. V. Volovich, Phys. Lett. B,164, 287 (1985).Google Scholar
  12. 12.
    I. Ya. Aref'eva, B. G. Dragovic, and I. V. Volovich, Phys. Lett. B,177, 357 (1986).Google Scholar
  13. 13.
    F. A. Bais, H. Nicolai, and P. van Nieuwenhuizen, Nucl. Phys. B,228, 333 (1983); A. Casher, F. Englert, H. Nicolai, and M. Rooman, Nucl. Phys. B,243, 173 (1984).Google Scholar
  14. 14.
    G. Fogleman and K. S. Viswanathan, Phys. Rev. D,31, 299 (1985).Google Scholar
  15. 15.
    A. D. Popov, Teor. Mat. Fiz.,74, 223 (1988).Google Scholar
  16. 16.
    V. D. Lyakhovskii and A. A. Bolokhov, Symmetry Groups and Elementary Particles [in Russian], Leningrad State University, Leningrad (1983).Google Scholar
  17. 17.
    C. Destri, C. A. Orzalesi, and P. Rossi, Ann. Phys. (N.Y.),147, 321 (1983).Google Scholar
  18. 18.
    E. Witten, “Fermion quantum numbers in Kaluza-Klein theory,” Preprint, Princeton (1983).Google Scholar
  19. 19.
    S. Randjbar-Daemi, A. Salam, and J. Strathdee, Phys. Lett. B,132, 56 (1983); A. Salam and E. Sezgin, Phys. Lett. B,147, 47 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. D. Popov

There are no affiliations available

Personalised recommendations