Skip to main content
Log in

Abstract

The frequency of length of strike-slip faults in continental crust follows a lognormal probability distribution, and a nonlinear positive correlation exists between length and offset. These results appear to be scale-independent. An explanation of the observations is presented in terms of a stochastic model which treats the occurrence of faulting as a Kolmogorov-type process obeying the law of proportionate effect. This model accounts for the length distribution of faults. Tentatively, the correlation between length and offset is ascribed to an allometric law relating the relative growth rates of these two parameters. The possibility of the application of the concepts of continuum damage mechanics to the problem is also briefly explored as a way to introduce time-space averages of tectonic stress and strain-rate into the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agterberg, F. P., 1974, Geomathematics: Amsterdam: Elsevier.

    Google Scholar 

  • Aitchison, J. and Brown, J. A. C., 1957, The lognormal distribution: Cambridge, University Press.

    Google Scholar 

  • Caputo, M., 1977, A mechanical model for the statistics of earthquakes, magnitude, moment, and fault distribution: Bull. Seism. Soc. Amer., v. 67, p. 849–861.

    Google Scholar 

  • Hult, J., 1979, CDM—Capabilities, limitations, and promises,in Easterling, K. E., ed., Mechanisms of deformation and fracture: Oxford, Pergamon Press, p. 233–247.

    Google Scholar 

  • Huxley, J. S., 1932, Problems of relative growth: New York, Dial Press.

    Google Scholar 

  • Kanamori, H. and Anderson, D. L., 1975, Theoretical basis of some empirical relations in seismology: Bull Seism. Soc. Amer., v. 65, p. 1073–1095.

    Google Scholar 

  • Kapteyn, J. C., 1903, Skew frequency curves in biology and statistics: Groningen, Noordhoff.

    Google Scholar 

  • King, G. C. P., 1978, Geological faults: fracture, creep and strain: Proc. Roy. Soc. London, A-288, p. 197–212.

    Google Scholar 

  • Kolmogorov, A. N., 1941, Über das logarithmisch normale Verteilungsgesetz der Dimensionen der Teilchen bei Zerstückelung: C. R. Acad. Sci. U.R.S.S. v. 31, p. 99–101.

    Google Scholar 

  • Ranalli, G., 1976, Length distribution of strike-slip faults and the process of breakage in continental crust: Can. Jour. Earth Sci., v. 13, p. 704–707.

    Google Scholar 

  • Ranalli, G., 1977, Correlation between length and offset in strike-slip faults: Tectonophysics, v. 37, T1-T7.

    Google Scholar 

  • Smart, J. S., 1979, Determinism and randomness in fluvial geomorphology: EOS, Trans. Amer. Geophys. Union, v. 60, 651–655.

    Google Scholar 

  • Sole Sugrañes, L., 1978, Alineaciones y fracturas en el sistema Catalan segun las imagenes LANDSAT-1: Tecniterrae, v. 22, p. 1–11.

    Google Scholar 

  • Tchalenko, J. S., 1970, Similarities between shear zones of different magnitudes: Bull. Geol. Soc. Amer., v. 81, p. 1625–1640.

    Google Scholar 

  • Vistelius, A. B., 1960, The skew frequency distribution and the fundamental law of the geochemical processes: Jour. Geol., v. 68, p. 1–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranalli, G. A stochastic model for strike-slip faulting. Mathematical Geology 12, 399–412 (1980). https://doi.org/10.1007/BF01029423

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029423

Key words

Navigation