Skip to main content
Log in

Dynamical and spatial aspects of sandpile cellular automata

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Bak, Tang, and Wiesenfeld cellular automaton is simulated in 1, 2, 3, 4, and 5 dimensions. We define a (new) set of scaling exponents by introducing the concept of conditional expectation values. Scaling relations are derived and checked numerically and the critical dimension is discussed. We address the problem of the mass dimension of the avalanches and find that the avalanches are noncompact for dimensions larger than 2. The scaling of the power spectrum derives from the assumption that the instantaneous dissipation rate of the individual avalanches obeys a simple scaling relation. Primarily, the results of our work show that the flow of sand down the slope does not have a 1/f power spectrum in any dimension, although the model does show clear critical behavior with scaling exponents depending on the dimension. The power spectrum behaves as 1/f 2 in all the dimensions considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. B. Weissman,Rev. Mod. Phys. 60:537 (1988).

    Google Scholar 

  2. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    Google Scholar 

  3. P. Bak, C. Tang, and K. Wiesenfeld,Phys. Rev. Lett. 59:381 (1987).

    Google Scholar 

  4. P. AlstrØm, P. Trunfio, and H. E. Stanley, inRandom Fluctuations and Pattern Growth: Experiments and Models, H. H. Stanley and N. Ostrowsky, eds. (Kluwer, Dordrecht, 1989), p. 340.

    Google Scholar 

  5. P. Bak,Physica A 163:403 (1990).

    Google Scholar 

  6. P. Bak and K. Chen,Physica D 38:5 (1989).

    Google Scholar 

  7. P. Bak, K. Chen, and M. Creutz,Nature 342:780 (1989).

    Google Scholar 

  8. P. Bak, K. Chen, and C. Tang,Phys. Rev. Lett. A 147:297 (1990).

    Google Scholar 

  9. P. Bak and C. Tang,Physics Today 42:S27 (1989).

    Google Scholar 

  10. P. Bak, C. Tang, and K. Wiesenfeld,Phys. Rev. A 38:3645 (1989).

    Google Scholar 

  11. P. Bak, C. Tang, and K. Wiesenfeld, inRandom Fluctuations and Pattern Growth: Experiments and Models, H. E. Stanley and N. Ostrowsky, eds. (Kluwer, Dordrecht, 1989), p. 329.

    Google Scholar 

  12. J. M. Carlson, J. T. Chayes, E. R. Grannan, and G. H. Swindle,Phys. Rev. A 42:2467 (1990).

    Google Scholar 

  13. K. Chen and P. Bak,Phys. Lett. 140:299 (1989).

    Google Scholar 

  14. D. Dhar,Phys. Rev. Lett. 63:1659 (1989).

    Google Scholar 

  15. D. Dhar and R. Ramaswamy,Phys. Rev. Lett. 64:1613 (1990).

    Google Scholar 

  16. G. Grinstein, D.-H. Lee, and S. Sachdev,Phys. Rev. Lett. 64:1927 (1990).

    Google Scholar 

  17. H. J. Jensen,Phys. Rev. Lett. 64:3103 (1990).

    Google Scholar 

  18. H. J. Jensen, K. Christensen, and H. C. Fogedby,Phys. Rev. B 40:7425 (1989).

    Google Scholar 

  19. J. Kertész and L. B. Kiss,J. Phys. A 23:L433 (1990).

    Google Scholar 

  20. B. McNamara and K. Wiesenfeld,Phys. Rev. A 41:1867 (1990).

    Google Scholar 

  21. S. P. Obukhov,Phys. Rev. Lett. 65:1395 (1990).

    Google Scholar 

  22. K. Wiesenfeld, C. Tang, and P. Bak,J. Stat. Phys. 54:1441 (1989).

    Google Scholar 

  23. K. Wiesenfeld, J. Theiler, and B. McNamara,Phys. Rev. Lett. 65:949 (1990).

    Google Scholar 

  24. P. AlstrØm,Phys. Rev. A 38:4905 (1988).

    Google Scholar 

  25. P. Grassberger and S. S. Manna, Some more sandpiles, Physics Department, University of Wuppertal, Preprint, to appear inJ. Phys. (Paris).

  26. T. Hwa and M. Kardar,Phys. Rev. Lett. 62:1813 (1989);Physica D 38:198 (1989).

    Google Scholar 

  27. L. P. Kadanoff, S. Nagel, L. Wu, and S. Zhou,Phys. Rev. A 39:6524 (1989).

    Google Scholar 

  28. L. P. Kadanoff,Physica A 163:1 (1990).

    Google Scholar 

  29. S. P. Obukhov, inRandom Fluctuations and Pattern Growth: Experiments and Models, H. E. Stanley and N. Ostrowsky, eds. (Kluwer, Dordrecht, 1989), p. 336; see also J. Honkonen,Phys. Lett. A 145:87 (1990).

    Google Scholar 

  30. C. Tang, Scalings in avalanches and elsewhere, Institute for Theoretical Physics, University of California, Santa Barbara, preprint, submitted toPhys. Rev. A.

  31. C. Tang and P. Bak,Phys. Rev. Lett. 60:2347 (1988).

    Google Scholar 

  32. C. Tang and P. Bak,J. Stat. Phys. 51:797 (1988).

    Google Scholar 

  33. Y.-C. Zhang,Phys. Rev. Lett. 63:470 (1989).

    Google Scholar 

  34. P. Bak and C. Tang,J. Geophys. Res. B 94:15635 (1989).

    Google Scholar 

  35. P. Bak and K. Chen, Dynamics of earthquakes, inFractals and Their Application to Geophysics (Geological Society of America, Denver, 1990).

    Google Scholar 

  36. J. M. Carlson and J. S. Langer,Phys. Rev. Lett. 62:2632 (1989).

    Google Scholar 

  37. K. Ito and M. Matsuzaki,J. Geophys. Res. 95:6853 (1990).

    Google Scholar 

  38. A. Sonnette and D. Sonnette,Europhys. Lett. 9:192 (1989).

    Google Scholar 

  39. H. Takayasu and M. Matsuzaki,Phys. Lett. 131:244 (1988).

    Google Scholar 

  40. G. W. Baxter and R. P. Behringer,Phys. Rev. A 42:1017 (1990).

    Google Scholar 

  41. W. Clauss, A. Kittel, U. Rau, J. Parisi, J. Peinke, and R. P. Huebener, Self-organized critical behavior in low-temperature impact ionization breakdown ofp-Ge, Physikalisches Institut, Tübingen, Preprint.

  42. P. Evesque and J. Rajchenbach,Phys. Rev. Lett. 62:44 (1989).

    Google Scholar 

  43. G. A. Held, D. H. Solina, II, D. T. Keane, W. J. Haag, P. M. Horn, and G. Grinstein,Phys. Rev. Lett. 65:1120 (1990).

    Google Scholar 

  44. H. M. Jaeger, Chu-heng Liu, and Sidney R. Nagel,Phys. Rev. Lett. 62:40 (1989).

    Google Scholar 

  45. H. M. Jaeger, C.-H. Liu, S. R. Nagel, and T. A. Witten, Friction in granular flow, James Franck Institute, Chicago, Preprint.

  46. D. K. C. MacDonald,Noise and Fluctuations: An Introduction (Wiley, New York, 1962).

    Google Scholar 

  47. P. Z. Peebles, Jr.,Probability, Random Variables, and Random Signal Principles (McGraw-Hill, 1987).

  48. A. Papoulis,The Fourier Integral and its Applications (McGraw-Hill, 1962).

  49. A. van der Ziel,Physica 16:359 (1950).

    Google Scholar 

  50. D. Halford,Proc. IEEE 56:251 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, K., Fogedby, H.C. & Jeldtoft Jensen, H. Dynamical and spatial aspects of sandpile cellular automata. J Stat Phys 63, 653–684 (1991). https://doi.org/10.1007/BF01029204

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029204

Key words

Navigation