Advertisement

Journal of Statistical Physics

, Volume 63, Issue 3–4, pp 541–565 | Cite as

Instability of the anomalies in the one-dimensional Anderson model at weak disorder

  • Athanasios Speis
Articles
  • 26 Downloads

Abstract

We study the asymptotic behavior of the invariant measure, the Lyapunov exponent, and the density of states in the weak disorder limit in the case where the single-site potential distributionμ is not centered and for the special energiesE=cos(πp/q). We also prove that in general the above quantities can be continuously extended to zero disorder as continuous functions in the disorder parameter for all energiesE∈(−1, 1).

Key words

Anderson model invariant measure instability of the anomalics weak asymptotic expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Anderson,Phys. Rev. 109:1492 (1958).Google Scholar
  2. 2.
    P. Bougerol and J. Lacroix, Products at random matrices with applications to Schrödinger operators, inProgress in Probability and Statistics, Vol. 8 (Birkhäuser, Boston, 1985).Google Scholar
  3. 3.
    A. Bovier and A. Klein, Weak disorder expansion of the invariant measure for the one-dimensional Anderson model,J. Stat. Phys. 51:501–517 (1988).Google Scholar
  4. 4.
    B. Derrida and E. Gardner, Lyapunov exponent of the one dimensional Anderson model: Weak disorder expansions,J. Phys. (Paris)45:1285–1295 (1984).Google Scholar
  5. 5.
    D. Thouless, inIll-condensed Matter, R. Balian, R. Maynard, and G. Toulonse, eds. (North-Holland, Amsterdam, 1979).Google Scholar
  6. 6.
    M. Kappus and Z. Wegner, Anomaly in the bound centre of the one-dimensional Anderson model,Z. Phys. 1981:15–21 (1981).Google Scholar
  7. 7.
    M. Campanino and A. Klein, Anomalies in the one dimensional Anderson model at weak disorder,Commun. Math. Phys., to appear.Google Scholar
  8. 8.
    A. Klein and A. Speis, Regularity of the invariant measure and of the density of states in the one-dimensional Anderson model,J. Fund. Anal. 88:211–227 (1990).Google Scholar
  9. 9.
    A. Klein and A. Speis, Smoothness at the density of states in the Anderson model on a one-dimensional strip,Ann. Phys. (N. Y.)183:352–398 (1988).Google Scholar
  10. 10.
    M. Campanino and A. Klein, A supersymmetric transfer matrix and differentiability of the density at states in the one-dimensional Anderson model,Commun. Math. Phys. 104:227–241 (1986).Google Scholar
  11. 11.
    V. G. Maz'ja,Sobolev Spaces (Springer-Verlag, Berlin, 1980).Google Scholar
  12. 12.
    A. Klein, J. Lacrox, and A. Speis, Regularity of the density of states in the Anderson model on a strip for potentials with singular continuous distributions,J. Stat. Phys. 57:65–88 (1989).Google Scholar
  13. 13.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, IVAnalysis of Operators (Academic Press, New York, 1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Athanasios Speis
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn Arbor

Personalised recommendations