Advertisement

Theoretical and Mathematical Physics

, Volume 43, Issue 3, pp 494–502 | Cite as

Description of the form factor of a relativistic two-particle system in the covariant Hamiltonian formulation of quantum field theory

  • N. B. Skachkov
  • I. L. Solovtsov
Article

Keywords

Field Theory Quantum Field Theory Form Factor Hamiltonian Formulation Covariant Hamiltonian Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. N. Bogolyubov, Fiz. Elem. Chastits At. Yadra,3, 144 (1972); P. N. Bogolubov, Ann. Inst. Henri Poincaré,8, 163 (1967).Google Scholar
  2. 2.
    S. D. Drell and T. D. Lee, Phys. Rev. D,7, 1798 (1972); D. Amati et al., Preprint CERN TH-1644 (1973); A. T. Filippov, Preprint E2-7229, JINR, Dubna (1974).Google Scholar
  3. 3.
    A. A. Logunov and A. N. Tavkhelidze, Nuovo Cimento,29, 380 (1963).Google Scholar
  4. 4.
    V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, Preprint E2-3498, JINR, Dubna (1967); R2-3900 [in Russian], Dubna (1968); V. R. Garsevanishvili et al., Teor. Mat. Fiz.,23, 310 (1975); A. L. Khelashvili, Communication R2-8750 [in Russian], JINR, Dubna (1976); R. N. Faustov, Teor. Mat. Fiz.,3, 349 (1970); R. N. Faustov, Ann. Phys.,78, 176 (1973).Google Scholar
  5. 5.
    N. B. Skachkov and I. L. Solovtsov, Preprint E2-11727, JINR, Dubna (1978).Google Scholar
  6. 6.
    V. G. Kadyshevskii, Zh. Eksp. Teor. Fiz.,46, 654, 872 (1964).Google Scholar
  7. 7.
    V. G. Kadyshevsky, Nucl. Phys.,6, 125 (1968).Google Scholar
  8. 8.
    V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B. Skachkov, Nuovo Cimento A,55, 233 (1968).Google Scholar
  9. 9.
    V. G. Kadyshevskii, R. M. Mir-Kasimov, and N. B. Skachkov, Fiz. Elem. Chastits At. Yadra,2, 635 (1972).Google Scholar
  10. 10.
    V. A. Karmanov, Zh. Eksp. Teor. Fiz.,71, 339 (1976).Google Scholar
  11. 11.
    N. M. Atakishiev, R. M. Mir-Kasimov, and Sh. M. Nagiev, Teor. Mat. Fiz.,32, 34 (1977).Google Scholar
  12. 12.
    V. M. Vinogradov, Teor. Mat. Fiz.,7, 289 (1971).Google Scholar
  13. 13.
    N. B. Skachkov, Teor. Mat. Fiz.,25, 313 (1975).Google Scholar
  14. 14.
    I. S. Shapiro, Dokl. Akad. Nauk SSSR,106, 647 (1956).Google Scholar
  15. 15.
    M. A. Naimark, Linear Representations of the Lorentz Group, Pergamon Press, Oxford (1964); I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions, Vol. 5, Integral Geometry and Representation Theory, Academic Press, New York (1966).Google Scholar
  16. 16.
    N. B. Skachkov and I. L. Solovtsov, Preprint E2-11678, JINR, Dubna (1978).Google Scholar
  17. 17.
    N. B. Skachkov and I. L. Solovtsov, Preprint E2-9763, JINR, Dubna (1976).Google Scholar
  18. 18.
    R. S. Kaushal, Phys. Lett. B,57, 354 (1975); H. J. Muller-Kirster, Phys. Rev. D,12, 1103 (1975).Google Scholar
  19. 19.
    V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, Lett. Nuovo Cimento.,5, 907 (1973).Google Scholar
  20. 19a.
    S. Brodsky and G. Farrar, Phys. Rev. Lett.,31, 1153 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • N. B. Skachkov
  • I. L. Solovtsov

There are no affiliations available

Personalised recommendations