Theoretical and Mathematical Physics

, Volume 28, Issue 2, pp 715–720 | Cite as

Heisenberg dynamics. Covariant representations

  • V. M. Maksimov


Covariant Representation Heisenberg Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. M. Maksimov, Teor. Mat. Fiz.,25, 10 (1975).Google Scholar
  2. 2.
    R. T. Powers, J. Funct. Anal.,18, 85 (1975).Google Scholar
  3. 3.
    Ola Brattely and D. W. Robinson, Commun. Math. Phys.,42, 253 (1975).Google Scholar
  4. 4.
    R. T. Powers and Sh. Sakai, Commun. Math. Phys.,39, 273 (1975).Google Scholar
  5. 5.
    Functional Analysis [in Russian], Nauka (1972).Google Scholar
  6. 6.
    S. G. Krein, Linear Differential Equations in a Banach Space [in Russian], Nauka (1967).Google Scholar
  7. 7.
    V. M. Maksimov, Teor. Mat. Fiz.,20, 18 (1974).Google Scholar
  8. 8.
    M. A. Naimark, Normed Rings, Groningen (1960).Google Scholar
  9. 9.
    R. E. Edwards, Functional Analysis, New York (1966).Google Scholar
  10. 10.
    N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, [in Russian], Nauka (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • V. M. Maksimov

There are no affiliations available

Personalised recommendations