Global trace metal cycles and predictions

  • Fred T. Mackenzie
  • Ronald J. Lantzy
  • Virginia Paterson
Article

Abstract

A methodology and mathematical formulation are presented for development of the global geochemical cycles of trace metals. Global cycling models of As, Se, and Hg are discussed in detail and used to assess the impact of the activities of society on these element cycles. These models show that anthropogenic activities may have increased the global concentrations of these elements in rain, seawater, and perhaps in river water. Model calculations suggest that increased concentrations of these elements in the world's surface ocean by the year 2000 will be small. A two-reservoir, cycling model of trace metals in atmospheric particulates is developed and used to assess the sources of element enrichments in these particulates. The model enables prediction of trace metal enrichment factors in atmospheric particulates, where enrichment factor is defined as the metal/Al ratio in atmospheric particulates divided by the metal/Al ratio in soils. Correspondence between predicted and observed enrichment factors suggests that for some trace metals, their enrichments in atmospheric particulates are caused, at least in part, by the industrial and fossil fuel burning activities of society. Model calculations further show that cessation of these activities would result in a return of present-day or future enrichment factors to preindustrial values in less than one year.

Key words

geochemical cycle predictive modeling trace metals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Erreish, G. M., Whitehead, E. I., and Olson, O. E., 1968, Evolution of volatile selenium from soils: Soil Science, v. 106, p. 415–420.Google Scholar
  2. Andren, A. W., Klein, D. H., and Talmi, Y., 1975, Selenium in coal—fired steam plant emissions: Environ. Sci. Technol., v. 9, p. 856–858.Google Scholar
  3. Arsenic, 1977, Natl. Acad. Sci., Washington, D. C., 332 p.Google Scholar
  4. Beauford, W., Barber, J., and Barringer, A. R., 1975, Heavy metal release from plants into the atmosphere: Nature, v. 256, p. 35–37.Google Scholar
  5. Beauford, W., Barber, J., and Barringer, A. R., 1977, Release of particles containing metals from vegetation into the atmosphere: Science, v. 195, p. 571–573.Google Scholar
  6. Bertine, K. K. and Goldberg, E. D., 1971, Fossil fuel combustion and the major sedimentary cycle: Science, v. 173, p. 233–235.Google Scholar
  7. Bolton, N. E., Carter, J. A., Emery, J. F., Feldman, C., Fulkerson, W., Hulett, L. D., and Lyon, W. S., 1975, Trace element mass balance around a coal-fired steam plant,in Babu, S. P. (Ed.), Trace elements in fuel: Adv. Chem. Ser. 141, ACS, Washington, D. C., p. 175–187.Google Scholar
  8. Bowen, H. J. M., 1966, Trace elements in biochemistry, Academic Press, London, 241 p.Google Scholar
  9. Braman, R. S. and Foreback, C. C., 1973, Methylated forms of arsenic in the environment: Science, v. 182, p. 1247–1249.Google Scholar
  10. Braman, R. S., 1975, Arsenic in the environment,in Woolson, E. A. (Ed.), Arsenical pesticides: ACS Symposium Series 7, Washington, D. C., p. 108–123.Google Scholar
  11. Broecker, W. S., 1963, Radioisotopes and large-scale oceanic mixing,in Hill, M. N. (Ed.), The Sea, vol. 2: Wiley-Interscience, New York, p. 88–108.Google Scholar
  12. Broecker, W. S., 1971, A kinetic model for the chemical composition of sea water: Quaternary Res., v. 1, p. 188–207.Google Scholar
  13. Broecker, W. S., 1974, Chemical oceanography: Harcourt Brace Jovanovich, Inc., New York, 214 p.Google Scholar
  14. Broecker, W. S., Li, Y., and Peng, T., 1971, Carbon dioxide—man's unseen artifact,in Hood, D., (Ed.), Impingement of man on the oceans: Wiley-Interscience, John Wiley and Sons, Inc., New York, p. 287–324.Google Scholar
  15. Cadle, R., 1975, Volcanic emissions of halides and sulfur compounds to the troposphere and stratosphere: J. Geophys. Res., v. 80, p. 1650–1652.Google Scholar
  16. Chau, Y. K., Wong, P. T. S., Silverberg, B. A., Luxon, P. L., and Bengert, G. A., 1976, Methylation of selenium in the aquatic environment: Science, v. 192, p. 1130–1131.Google Scholar
  17. Chester, R. and Stoner, J. H., 1974, The distribution of Mn, Fe, Cu, Ni, Co, Ga, Cr, V, Ba, Sr, Sn, Zn, and Pb in some soil-sized particulates from the lower troposphere over the world ocean: Mar. Chem., v. 2, p. 157–188.Google Scholar
  18. Coakley, G. J., 1975, Selenium,in Knoerr, A. W. (Ed.), Mineral facts and problems: U.S. Bur. of Mines Bull. 667, p. 955–961.Google Scholar
  19. Cox, D. P., 1975, Microbiological methylation of arsenic,in Woolson, E. A. (Ed.), Arsenical pesticides: ACS Symposium Series 7, Washington, D. C., p. 81–96.Google Scholar
  20. Craig, H., 1957, The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea: Tellus, v. 9, p. 1–17.Google Scholar
  21. Crecelius, E. P., 1975, The geochemical cycle of arsenic in Lake Washington and its relation to other elements: Limnol. Oceanog., v. 20, p. 441–451.Google Scholar
  22. Dams, R., Heindryckz, R., and Van Cauwenberghe, K., 1973, Scheikunde en analyse van luchtpollutie, Deel III, Appendices: Ind. Chim. Belg., v. 38, p. 627–648.Google Scholar
  23. Dams, R. and DeJonge, J., 1976, Chemical composition of Swiss aerosols from the Jungfraujoch: Atmos. Environ., v. 10, p. 1079–1084.Google Scholar
  24. Davison, R. L., Natusch, D. F. S., Wallace, J. R., and Evans, C. A., Jr., 1974, Trace elements in fly ash. Dependence of concentration on particle size: Environ. Sci. Technol., v. 8, p. 1107–1113.Google Scholar
  25. Deevey, E. S., Jr., 1970, Mineral cycles: Sci. Amer., v. 223, p. 149–158.Google Scholar
  26. D'Itri, F. M. (Ed.), 1978, An assessment of mercury in the environment, Natl. Acad. Sci., Washington, D. C., 185 p.Google Scholar
  27. Doran, J. W. and Alexander, M., 1976, Microbial formation of volatile selenium compounds in soil: Soil Sci. Soc. Amer. Jour., v. 40, p. 687–690.Google Scholar
  28. Duce, R. A., Hoffman, G. L., and Zoller, W. H., 1975, Atmospheric trace metals at remote northern and southern hemispheric sites: Pollution or natural?: Science, v. 187, p. 59–61.Google Scholar
  29. Duce, R. A., Hoffman, G. L., Ray, B. J., Fletcher, I. S., Walsh, P. R., Fasching, J. L., Piotrowicz, S. R., Hoffman, E. J., Miller, J. M., and Heffter, J. L., 1976a, Trace metals in the marine atmosphere: Sources and fluxes,in Windom, H., and Duce, R. (Eds.), Marine pollutant transfer: D. C. Heath and Co., Lexington, Massachusetts, p. 77–120.Google Scholar
  30. Duce, R. A., Ray, B. J., Hoffman, G. L., and Walsh, P. R., 1976b, Trace metal concentration as a function of particle size in marine aerosols from Bermuda: Geophys. Res. Lett., v. 3, p. 339–342.Google Scholar
  31. Eriksson, E., 1971, Compartment models and reservoir theory: Ann. Rev. Ecology Systematics, v. 2, p. 67–84.Google Scholar
  32. Ferguson, J. F. and Gavis, J., 1972, A review of the arsenic cycle in natural waters: Water Res., v. 6, p. 1259–1274.Google Scholar
  33. Garrels, R. M. and Mackenzie, F. T., 1971, Evolution of sedimentary rocks: W. W. Norton and Co., Inc., New York, 397 p.Google Scholar
  34. Garrels, R. M. and Mackenzie, F. T., 1972, A quantitative model for the sedimentary rock cycle: Mar. Chem., v. 1, p. 27–41.Google Scholar
  35. Garrels, R. M., Mackenzie, F. T., and Hunt, C., 1973, Chemical cycles and the global environment: Assessing human influences: William Kaufmann, Inc., Los Angeles, California, 206 p.Google Scholar
  36. Goldberg, E. D., 1971, Atmospheric dust, the sedimentary cycle, and man: Geophysics, v. 1, p. 117–132.Google Scholar
  37. Goldberg, E. D., 1976, Rock volatility and aerosol composition: Nature, v. 260, p. 128–129.Google Scholar
  38. Greenspoon, G., 1970, Mercury,in Mineral facts and problems: U.S. Bur. Mines Bull. 650, p. 639–652.Google Scholar
  39. Hartley, W. J. and Grant, A. B., 1961, A review of selenium responsive diseases of New Zealand livestock: Fed. Proc., v. 20, pt. 1, p. 679–688.Google Scholar
  40. Harvey, S. C., 1970, Heavy metals,in Goodman, L. S. and Gilman, A. (Eds.), The pharmacological basis of therapeutics, 4th ed.: Macmillan and Co., New York, p. 958–986.Google Scholar
  41. Hashimoto, Y. and Winchester, J. W., 1967, Selenium in the atmosphere: Environ. Sci. Technol., v. 1, p. 338–340.Google Scholar
  42. Heath, G. R., 1974, Dissolved silica and deep-sea sediments,in Hay W. W. (Ed.), Studies in paleo-oceanography: Soc. Econ. Paleontol. Mineral. Spec. Pub. 20, Tulsa, Oklahoma, p. 77–93.Google Scholar
  43. Holeman, J. N., 1968, The sediment yield of major rivers of the world: Water Res. Res., v. 4, p. 737–747.Google Scholar
  44. Howard, J. H., III, 1977, Geochemistry of selenium: Formation of ferroselite and selenium behavior in the vicinity of oxidizing sulfide and uranium deposits: Geochim. Cosmochim. Acta, v. 41, p. 1665–1678.Google Scholar
  45. Johnson, D. L., 1972, Bacterial reduction of arsenate in sea water: Nature, v. 240, p. 44–45.Google Scholar
  46. Johnson, D. L. and Braman, R. S., 1974, Distribution of atmospheric mercury species near ground: Environ. Sci. Technol., v. 8, p. 1003–1009.Google Scholar
  47. Judson, S., 1968, Erosion of the land: Am. Scientist, v. 56, p. 356–374.Google Scholar
  48. Kanamori, S. and Sugawara, K., 1965, Geochemical study of arsenic in natural waters. I. Arsenic in rain and snow: J. Earth Sci., Nagoya Univ., v. 13, p. 23–35.Google Scholar
  49. Kharkar, D. P., Turekian, K. K., and Bertine, K. K., 1968, Stream supply of dissolved silver, molybdenum, antimony, selenium, chromium, cobalt, rubidium, and cesium to the oceans: Geochim. Cosmochim. Acta, v. 32, p. 285–298.Google Scholar
  50. Klein, D. H., Andren, A. W., Carter, J. A., Emery, J. F., Feldman, C., Fulkerson, W., Lyon, W. S., Ogle, J. C., Talmi, Y., Van Hook, R. I., and Bolton, N., 1975, Pathways of thirty-seven trace elements through a coal-fired power plant: Environ. Sci. Technol., v. 9, p. 973–979.Google Scholar
  51. Krauskopf, K. B., 1967, Introduction to geochemistry, McGraw-Hill Book Co., New York, 721 p.Google Scholar
  52. Kothny, E. L., 1973, The three-phase equilibrium of mercury in nature,in Kothny, E. L. (Ed.), Trace elements in the environment: Adv. Chem. Ser. 123, ACS, Washington, D. C., p. 48–80.Google Scholar
  53. Kuznets, S., 1971, Economic growth of nations: Total output and production structure: Harvard Univ. Press, Cambridge, Massachusetts, 363 p.Google Scholar
  54. Lakin, H. W., 1972, Selenium accumulation in soils and its absorption by plants and animals: Geol. Soc. Amer. Bull., v. 83, p. 181–190.Google Scholar
  55. Lakin, H. W., 1973, Selenium in our environment,in Kothny, E. L. (Ed.), Trace elements in the environment: Adv. Chem. Ser. 123, ACS, Washington, D. C., p. 96–111.Google Scholar
  56. Lal, D. and Peters, B., 1967, Cosmic ray produced radioactivity on the earth,in Flügge, S. (Ed.), Handbuch der physik, v. 46: Springer-Verlag, Berlin, p. 551–612.Google Scholar
  57. Lantzy, R. J., 1978, The cycling behavior of trace metals: Ph.D. thesis, Northwestern University.Google Scholar
  58. Lantzy, R. J. and Mackenzie, F. T., in press, Atmospheric trace metals: Global cycles and assessment of man's impact: Geochim. Cosmochim. Acta.Google Scholar
  59. Lerman, A., Mackenzie, F. T., and Garrels, R. M., 1975, Modeling of geochemical cycles: Phosphorus as an example,in Whitten, E. H. T. (Ed.), Quantitative studies in the geological sciences: Geol. Soc. Amer. Mem. 142, p. 205–218.Google Scholar
  60. Lisitzin, A. P., 1972, Sedimentation in the world's oceans: Soc. Econ. Paleontol. Mineral., Spec. Publ. 17, 218 p.Google Scholar
  61. Lunde, G., 1970, Analysis of arsenic and selenium in marine raw materials: J. Sci. Fd. Agric., v. 21, p. 242–247.Google Scholar
  62. Machta, L., 1972, The role of the oceans and biosphere in the carbon dioxide cycle,in Pyrssen, D. and Jagner, D. (Eds.), The changing chemistry of the oceans, Almqvist and Wiksell, Stockholm, p. 121–145.Google Scholar
  63. Mackenzie, F. T. and Wollast, R., 1977, Sedimentary cycling models of global processes,in Goldberg, E. D. (Ed.), The Sea, v. 5: Wiley-Interscience, New York, p. 739–785.Google Scholar
  64. McBride, B. C. and Wolfe, R. S., 1971, Biosynthesis of dimethylarsine by methano-bacterium: Biochemistry, v. 10, p. 4312–4317.Google Scholar
  65. Menzel, D. W., 1974, Primary productivity, dissolved and particulate organic matter, and the sites of oxidation of organic matter,in Goldberg, E. D. (Ed.), The sea, vol. 5: Wiley-Interscience, New York, p. 659–678.Google Scholar
  66. Meybeck, M., 1976, Total mineral dissolved transport by world major rivers: Bull. Sci. Hydrologiques, v. 21, p. 265–284.Google Scholar
  67. Milliman, J. D., 1974, Marine carbonates: Springer-Verlag, New York, 375 p.Google Scholar
  68. 1973 Minerals Yearbook, vol. 1, Metals, Minerals, and Fuels, 1975: U.S. Dept. Interior, Bureau of Mines, 1383 p.Google Scholar
  69. 1974 Minerals Yearbook, vol. 1, Metals, Minerals, and Fuels, 1976: U.S. Dept. Interior, Bureau of Mines, 1451 p.Google Scholar
  70. Morgan, R. E. and Weinberg, R., 1972, Computer simulation of world systems: Biogeochemical cycles: Internat. Jour. Environm. Studies, v. 3, p. 103–118.Google Scholar
  71. Natusch, D. F. S., Wallace, J. R., and Evans, C. A., Jr., 1974, Toxic trace elements: Preferential concentration in respirable particles: Science, v. 183, p. 202–204.Google Scholar
  72. Newell, R. E., Vincent, D. G., and Kidson, J. W., 1969, Interhemispheric mass exchange from meteorological and trace substance observations: Tellus, v. 21, p. 641–647.Google Scholar
  73. Oana, S., 1962, Volcanic gases and sublimates from Showashinzan: Bull. Volcanol., v. 24, p. 49–58.Google Scholar
  74. Paone, J., 1970, Arsenic: Bureau Mines Bull. v. 650, 479–487.Google Scholar
  75. Penrose, W. R., 1974, Arsenic in the marine and aquatic environments: Analysis, occurrence, and significance: CRC Critical Reviews in Environ. Control, v. 4, p. 465–482.Google Scholar
  76. Pilson, M. E. Q., 1974, Arsenate uptake and reduction byPacillopora verrucosa: Limnol. Oceanog., v. 19, p. 339–341.Google Scholar
  77. Piperno, E., 1975, Trace element emissions: Aspects of environmental toxicology,in Babu, S. P. (Ed.), Trace elements in fuel: Adv. Chem. Ser. 141, ACS, Washington, D. C., p. 192–209.Google Scholar
  78. Pytkowicz, R. M., 1971, The chemical stability of the oceans: Oregon State Univ. Dept. Oceanography Tech. Rept. 214, ref. 71–20, 24 p.Google Scholar
  79. Pytkowicz, R. M., 1973, The carbon dioxide system in the oceans: Swiss J. Hydrol., v. 35, p. 8–28.Google Scholar
  80. Redfield, A. C., Ketchum, B. H., and Richards, F. A., 1963, The influence of organisms on the composition of sea water,in Hill, M. N. (Ed.), The sea, vol. 2: Wiley-Interscience, New York, p. 26–77.Google Scholar
  81. Ridley, W. P., Dizikes, L. J., and Wood, J. M., 1977, Biomethylation of toxic elements in the environment: Science, v. 197, p. 329–332.Google Scholar
  82. Robinson, E. and Robbins, R. C., 1971, Emissions, concentrations and fate of particulate atmospheric pollutants: Amer. Petrol. Instit. Publ. #4076, Menlo Park, California, 123 p.Google Scholar
  83. Rosenfeld, I. and Beath, O., A., 1964, Selenium, geobotany, biochemistry, toxicity, and nutrition: Academic Press, New York, 411 p.Google Scholar
  84. Sandholm, M., Oksanen, H. E., and Pesonen, L., 1973, Uptake of selenium by aquatic organisms: Limnol. Oceanogr., v. 18, p. 496–499.Google Scholar
  85. Sondegaard, E., 1967, Selenium and vitamin E relationships, in Muth, O. H., Oldfield, J. E., and Weswig, P. H. (Eds.), Symposium: Selenium in biomedicine: AVI Publishing Co., Westport, Connecticut, p. 365–381.Google Scholar
  86. Stumm, W. (Ed.), 1977, Global chemical cycles and their alteration by man: Report of the Dahlem Workshop on Global Chemical Cycles and Their Alteration by Man, Berlin, 1976: Abakon Verlagsgessellschaft (in Komm.), Berlin, 347 p.Google Scholar
  87. Suzuoki, T., 1964, A geochemical study of selenium in volcanic exhalation and sulfur deposits: Bull. Chem. Soc. Japan, v. 37, p. 1200–1206.Google Scholar
  88. Svensson, B. H. and Söderlund, R. (Eds.), 1976, Nitrogen, phosphorus and sulphur—global cycles: SCOPE Rept. 7, Ecol. Bull. (Stockholm), 192 p.Google Scholar
  89. Turekian, K. K., 1969, The oceans, streams, and atmosphere,in Wedepohl, K. H. (Ed.), Handbook of geochemistry, vol. 1: Springer-Verlag, New York, p. 297–323.Google Scholar
  90. Vinogradov, A. P., 1959, The geochemistry of rare and dispersed chemical elements in soils: Consultants Bureau, Inc., New York, 209 p.Google Scholar
  91. Walsh, P. R., Duce, R. A., and Fasching, J. L., 1977, Impregnated filter sampling system for collection of volatile arsenic in the atmosphere: Environ. Sci. Technol., v. 11, p. 163–166.Google Scholar
  92. Wedepohl, K. H. (Ed.), 1969, Handbook of geochemistry, vol. II-1: Springer-Verlag, New York.Google Scholar
  93. Wedepohl, K. H. (Ed.), 1970, Handbook of geochemistry, vol. II-2: Springer-Verlag, New York.Google Scholar
  94. Wedepohl, K. H. (Ed.), 1972, Handbook of geochemistry, vol. II-3: Springer-Verlag, New York.Google Scholar
  95. Wedepohl, K. H. (Ed.), 1974, Handbook of geochemistry, vol. II-4: Springer-Verlag, New York.Google Scholar
  96. Weiss, H. V., Koide, M., and Goldberg, E. D., 1971, Selenium and sulfur in a Greenland ice sheet: Relation to fossil fuel combustion: Science, v. 172, p. 261–263.Google Scholar
  97. Whittaker, R. H. and Likens, G. E., 1973, Carbon in the biota,in Woodwell, G. M. and Pecan, E. V. (Eds.), Carbon in the biosphere: AEC Symposium Series 30, National Tech. Information Service, Springfield, Va., p. 281–302.Google Scholar
  98. Wolery, T. J. and Sleep, N. H., 1976, Hydrothermal circulation and geochemical flux at midocean ridges: Jour. Geol., v. 84, p. 249–275.Google Scholar
  99. Wollast, R., 1974, The silica problem:in The sea, v. 5, E. D. Goldberg, (Ed.), Wiley-Interscience, New York, 359–392.Google Scholar
  100. Wollast, R., Billen, G., and Mackenzie, F. T., 1976, Behavior of mercury in natural systems and its global cycle,in McIntyre, A. D., and Mills, C. F. (Eds.), Ecological toxicology research: Plenum Press, New York, p. 145–166.Google Scholar
  101. Woodwell, G. M., Craig, P. P., and Johnson, H. A., 1971, DDT in the biosphere: Where does it go?: Science, v. 174, p. 1101–1107.Google Scholar
  102. Wood, J. M., 1974, Biological cycles for toxic elements in the environment: Science, v. 183, p. 1049–1052.Google Scholar
  103. Woolson, E. A., 1975, Bioaccumulation of arsenicals,in Woolson, E. A. (Ed.), Arsenical pesticides: ACS Symposium Series 7, Washington, D. C., p. 97–107.Google Scholar
  104. Zoller, W. H., Gladney, E. S., and Duce, R. A., 1974, Atmospheric concentrations and sources of trace metals at the South Pole: Science, v. 183, p. 199–201.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Fred T. Mackenzie
    • 1
  • Ronald J. Lantzy
    • 1
  • Virginia Paterson
    • 1
  1. 1.Department of Geological SciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations