Theoretical and Mathematical Physics

, Volume 66, Issue 1, pp 19–31 | Cite as

Real finite-gap regular solutions of the Kaup-Boussinesq equation

  • A. O. Smirnov
Article

Keywords

Regular Solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York (1974).Google Scholar
  2. 2.
    J. Boussinesq, C. R. Acad. Sci.,72, 755 (1871).Google Scholar
  3. 3.
    D. J. Kaup, Prog. Theor. Phys.,54, 72 (1975).Google Scholar
  4. 4.
    D. J. Kaup, Prog. Theor. Phys.,54, 396 (1975).Google Scholar
  5. 5.
    V. P. Lukomskii, in: Physics and Mechanics of Nonlinear Phenomena [in Russian; Collection of Scientific Works], Naukova Dumka, Kiev (1979), pp. 93–108.Google Scholar
  6. 6.
    V. P. Lukomskii and I. G. Mikhailova, in: Physics and Mechanics of Nonlinear Phenomena [in Russian; Collection of Scientific Works], Naukova Dumka, Kiev (1979), pp. 109–115.Google Scholar
  7. 7.
    V. B. Matveev and M. I. Yavor, Ann. Inst. Henri Poincaré, Sec. A,31, 25 (1979).Google Scholar
  8. 8.
    M. V. Babich, A. I. Bobenko, and V. B. Matveev, Dokl. Akad. Nauk SSSR,272, 13 (1983).Google Scholar
  9. 9.
    M. V. Babich, A. I. Bobenko and V. B. Matveev, Izv. Akad. Nauk SSSR Ser. Mat.,49, 15 (1985).Google Scholar
  10. 10.
    B. A. Dubrovin and S. M. Natanzon, Funktsional. Analiz i Ego Prilozhen,16, 27 (1982).Google Scholar
  11. 11.
    E. D. Belokolos and V. Z. Énol'skii, Usp. Mat. Nauk,37, 89 (1982).Google Scholar
  12. 12.
    V. Z. Énol'skii, “Reduction of two-gap solution of the Korteweg-de Vries equation to elliptic functions by third-order transformations,” Preprint ITF-83-112R [in Russian], Institute of Theoretical Physics, Ukrainian Academy of Sciences, Kiev (1983).Google Scholar
  13. 13.
    E. D. Belokolos and V. Z. Énol'skii, “On the solutions expressed in terms of elliptic function of the nonlinear equations integrable within the inverse scattering method and reduction problem of hyperelliptic integrals,” Preprint ITP-82-36E [in English], Institute of Theoretical Physics, Ukrainian Academy of Sciences, Kiev (1982).Google Scholar
  14. 14.
    V. Z. Enolskii, “On the solutions in elliptic function of the integrable nonlinear equation,” Preprint ITP-83-36E [in English], Institute of Theoretical Physics, Ukrainian Academy of Sciences, Kiev (1983).Google Scholar
  15. 15.
    G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading, Mass. (1957).Google Scholar
  16. 16.
    P. Appel, Bull. Soc. Math. Fr.,10, 59 (1882).Google Scholar
  17. 17.
    E. D. Belokolos, A. I. Bobenko, V. B. Matveev, and V. Z. Énol'skii, Usp. Mat. Nauk,40, 23 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • A. O. Smirnov

There are no affiliations available

Personalised recommendations