Theoretical and Mathematical Physics

, Volume 34, Issue 3, pp 239–247 | Cite as

Three-dimensional rotational relaxation in external fields

  • F. M. Kuni
  • A. A. Melikhov
  • B. A. Storonkin


External Field Rotational Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. J. W. Debye, Polar Molecules, New York (1929).Google Scholar
  2. 2.
    S. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962).Google Scholar
  3. 3.
    B. K. Oh, W. M. Lalus, and R. E. Salomon, J. Chem. Phys.,64, 3375 (1976).Google Scholar
  4. 4.
    F. M. Kuni and B. A. Storonkin, Teor. Mat. Fiz.,31, 417 (1977).Google Scholar
  5. 5.
    P. S. Hubbard, Phys. Rev. A,6, 2421 (1972).Google Scholar
  6. 6.
    I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro Representations of the Rotation and Lorentz Groups and their Applications, Pergamon Press, Oxford (1963).Google Scholar
  7. 7.
    V. A. Fock, Dokl. Akad. Nauk SSSR,1, No. 5, 241 (1931).Google Scholar
  8. 8.
    T. M. Cherry, Trans. Amer. Math. Soc.,68, 224 (1950).Google Scholar
  9. 9.
    V. S. Buldyrev and S. Yu. Slavyanov, Vestn. LGU, No. 22, 70 (1968).Google Scholar
  10. 10.
    S. Yu. Slavyanov, Dif. Uravneniya, No. 2, 313 (1969).Google Scholar
  11. 11.
    A. Érdelyi et al (eds.), High Transcendental Functions, (California Institute of Technology H. Bateman M. S. Project), Vol. 1, McGraw Hill, New York (1953).Google Scholar
  12. 12.
    I. V. Aleksandrov, Theory of Magnetic Relaxation [in Russian], Nauka (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • F. M. Kuni
  • A. A. Melikhov
  • B. A. Storonkin

There are no affiliations available

Personalised recommendations