Theoretical and Mathematical Physics

, Volume 65, Issue 1, pp 992–998 | Cite as

Classical limit of the quantum inverse scattering problem

  • I. V. Bogdanov
Article

Keywords

Classical Limit Quantum Inverse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. D. Faddeev, Usp. Mat. Nauk,14, 57 (1959).Google Scholar
  2. 2.
    L. D. Faddeev, J. Math. Phys.,4, 72 (1963).Google Scholar
  3. 3.
    Z. S. Agranovich and V. A. Marchenko, The Inverse Problem of Scattering Theory [in Russian], State University, Khar'kov (1960).Google Scholar
  4. 4.
    V. De Alfaro and T. Regge. Potential Scattering, Amsterdam (1965).Google Scholar
  5. 5.
    R. G. Newton, Scattering Theory of Waves and Particles, McGraw-Hill, London (1966).Google Scholar
  6. 6.
    K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer, Berlin (1977).Google Scholar
  7. 7.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, The Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980).Google Scholar
  8. 8.
    J. A. Wheeler, Studies in Mathematical Physics, Princeton University (1976), pp. 351–422.Google Scholar
  9. 9.
    F. C. Hoyt, Phys. Rev.,55, 664 (1939).Google Scholar
  10. 10.
    O. B. Firsov, Zh. Eksp. Teor. Fiz.,24, 279 (1953).Google Scholar
  11. 11.
    I. V. Bogdanov and Yu. N. Demkov, Zh. Eksp. Teor. Fiz.,82, 1798 (1982).Google Scholar
  12. 12.
    G. A. Korn and T. M. Korn, Manual of Mathematics, New York (1967).Google Scholar
  13. 13.
    W. H. Miller, J. Chem. Phys.,51, 3631 (1969).Google Scholar
  14. 14.
    W. H. Miller, J. Chem. Phys.,54, 4174 (1971).Google Scholar
  15. 15.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press, Oxford (1974).Google Scholar
  16. 16.
    A. Érdelyi et al (eds), Higher Transcendental Functions (California Institute of Technology H. Bateman M. S. Project), Vol. 2. McGraw-Hill, New York (1953).Google Scholar
  17. 17.
    G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge (1922).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • I. V. Bogdanov

There are no affiliations available

Personalised recommendations