Skip to main content
Log in

A test of the onsager reciprocal relations and a discussion of the ionic isothermal vector transport coefficientsI Ij for aqueous AgNO3 at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Values ofI ij calculated from experimental data are given for AgNO3 at 25°C. Experimental values of the ratioI 12/I21 are calculated to provide a sensitive direct test of the Onsager reciprocal relations,I 12=I21. This ratio is found to be unity within experimental error (ca. 2%). The general physical interpretation ofI ij/N as mobilities is discussed. An approximate way of estimatingI ij for dissociated salts is considered. A comparison is made between AgNO3 I ij data and corresponding data for NaCl and KCl. It is concluded that ion-pair formation (1) sharply increases the magnitude of the interaction mobility,I 12/N; and (2) increases the “intrinsic mobility” of Ag+,I 11/N, and decreases the intrinsic mobility of NO 3 ,I 22/N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. D. G. Miller,Chem. Rev. 60, 15 (1960). See also D. G. Miller inTransport Phenomena in Fluids, H. J. Hanley, ed. (Marcel Dekker, New York, 1969), Chap. 11, which includes some more recent references.

    Google Scholar 

  2. N. Roessler and H. Schneider,Ber. Bunsen. Ges. 74, 1225 (1970).

    Google Scholar 

  3. J. G. Albright and D. G. Miller,J. Phys. Chem., in press.

  4. D. G. Miller,J. Phys. Chem. 70, 2639 (1966).

    Google Scholar 

  5. L. Onsager,Phys. Rev. 37, 405 (1931).

    Google Scholar 

  6. E. H. Wiebenga,Rec. Trav. Chim. 65, 273 (1946).

    Google Scholar 

  7. D. G. Miller,Am. J. Phys. 24, 595 (1956).

    Google Scholar 

  8. L. Onsager and R. M. Fuoss,J. Phys. Chem. 36, 2689 (1932).

    Google Scholar 

  9. M. J. Pikal,J. Phys. Chem. 75, 3124 (1971).

    Google Scholar 

  10. M. J. Pikal, and D. G. Miller,J. Phys. Chem. 74, 1337 (1970).

    Google Scholar 

  11. H. Lee and J. K. Wilmshurst,Australian J. Chem. 17, 943 (1964).

    Google Scholar 

  12. R. E. Hester and R. A. Plane,Inorg. Chem. 3, 769 (1964).

    Google Scholar 

  13. I. D. McKenzie and R. M. Fuoss,J. Phys. Chem. 73, 1501 (1969).

    Google Scholar 

  14. D. G. Miller,J. Phys. Chem. 71, 616 (1967).

    Google Scholar 

  15. D. G. Miller,J. Phys. Chem. 64, 1598 (1960).

    Google Scholar 

  16. R. Haase and J. Richter,Z. Naturforsch. 22a, 1761 (1967).

    Google Scholar 

  17. H. S. Dunsmore, S. K. Jalota, and R. Paterson,J. Chem. Soc. 1969A, 1061.

  18. G. Jones and J. H. Colvin,J. Am. Chem. Soc. 62, 338 (1940).

    Google Scholar 

  19. A. N. Campbell and K. P. Singh,Canadian J. Chem. 37, 1959 (1959).

    Google Scholar 

  20. A. N. Campbell and R. J. Friesen,Canadian J. Chem. 37, 1288 (1959).

    Google Scholar 

  21. D. A. MacInnes and A. S. Brown,Chem. Rev. 18, 335 (1936).

    Google Scholar 

  22. H. Pelzer, Diplomarbeit, Technische Hochschule, Aachen, 1961.

  23. T. Shedlovsky,J. Am. Chem. Soc. 54, 1411 (1932).

    Google Scholar 

  24. G. D. Parfitt and A. L. Smith,Trans. Faraday Soc. 59, 257 (1963).

    Google Scholar 

  25. C. H. Orr and H. E. Wirth,J. Phys. Chem. 63, 1147 (1959).

    Google Scholar 

  26. A. N. Campbell and E. M. Kartzmark,Canadian J. Chem. 28B, 43 (1950).

    Google Scholar 

  27. G. J. Janz, G. R. Lakshminarayanan, M. P. Klotzkin, and G. E. Mayer,J. Phys. Chem. 70, 536 (1966).

    Google Scholar 

  28. R. L. Kay,J. Am. Chem. Soc. 82, 2099 (1960).

    Google Scholar 

  29. H. S. Harned and C. L. Hildreth, Jr.,J. Am. Chem. Soc. 73, 3292 (1951).

    Google Scholar 

  30. L. G. Longsworth inStructure of Electrolytic Solutions, W. J. Hamer, ed. (John Wiley and Sons, Inc., New York, 1959), Chap. 12.

    Google Scholar 

  31. L. G. Longsworth, private communication, Nov. 5, 1969 (published with Prof. Longsworth's permission in ref. 3).

  32. J. G. Firth and H. J. V. Tyrell,J. Chem. Soc. 1962, 2042.

  33. D. A. MacInnes and L. G. Longsworth,Chem. Rev. 11, 171 (1932).

    Google Scholar 

  34. R. Haase, G. Lehnert, H. J. Jansen,Z. Phys. Chem. (Frankfurt) 42, 32 (1964).

    Google Scholar 

  35. H. Strehlow and H. M. Koepp,Z. Electrochem. 62, 373 (1958).

    Google Scholar 

  36. J. Rastas,Acta Polytech. Scand., Chem. Met. Ser., No.50, 37 pp. (1966).

    Google Scholar 

  37. P. Lorenz,J. Phys. Chem. 65, 704 (1961).

    Google Scholar 

  38. J. B. Hasted, D. M. Ritson, and C. H. Collie,J. Chem. Phys. 16, 1 (1948).

    Google Scholar 

  39. L. Onsager and S. W. Provencher,J. Am. Chem. Soc.,90, 3134 (1968).

    Google Scholar 

  40. R. M. Fuoss,Proc. Nat. Acad. Sci. U.S. 45, 807 (1959).

    Google Scholar 

  41. R. H. Boyd,J. Chem. Phys. 35, 1281 (1961).

    Google Scholar 

  42. R. Zwanzig,J. Chem. Phys. 38, 1603 (1963).

    Google Scholar 

  43. R. Zwanzig,J. Chem. Phys. 38, 1605 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, D.G., Pikal, M.J. A test of the onsager reciprocal relations and a discussion of the ionic isothermal vector transport coefficientsI Ij for aqueous AgNO3 at 25°C. J Solution Chem 1, 111–130 (1972). https://doi.org/10.1007/BF01028449

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01028449

Key words

Navigation