Skip to main content
Log in

Hydride atom location and atomic dispersion parameter analysis in trimetal clusters using variable temperature X-ray diffraction

  • Proceedings Of The US-Italy International Conference On Organic Chemistry At Clusters And Surfaces, Piemonte, Italy (July 26–31, 1992)—Part III Of III
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Variable temperature X-ray diffraction studies were carried out on several μ-imidoyl clusters with the general formula, (μ-H)2 M 3(CO)9-(μ-imidoyl)(X) whereM=Ru or Os,X=Cl, Br, CF3COO, and imidoyl ligand is

or CH3C=NCH2CH3, in order to analyze ligand atom motion in the solid state and to precisely locate the hydride ligands. An initial study on (μ-H)(μ32-CH3C=NCH2CH3)Ru3(CO)8PPh3 indicates that the atomic (thermal) dispersion parameters (ADP) of the μ3-imidoyl ligand atoms can possibly be used to correlate solution ligand fluxionality with ligand-binding forces in the solid-state structures. Difference Fourier analysis techniques were used to locate hydride ligands in several triosmium clusters, and it was observed that if there was a nitrogen atom in the bridging ligand along a metal edge which also contained a hydride bridge then the hydride was asymmetrically bonded (ca. 0.1–0.7 Å) and always closer to the nitrogen bonded metal. In addition, in dihydrido trimetallic clusters, the distance of separation of the two hydride ligands correlates with the tendency of those hydrides to exchange at room temperature. If the angle ϑ, which describes the angle between the planes relating the bridging hydride ligands and the two inclusive metal atoms, is less than about 55 degrees, then the hydrides can undergo site exchange at room temperature on the nmr time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Dunitz, V. Schomaker, and K. Trueblood (1988).J. Phys. Chem. 92, 856–867.

    Google Scholar 

  2. P. Seiler and J. Dunitz (1979).Acta Crystallogr. B35, 2020–2032.

    Google Scholar 

  3. H. Burgi (1989).Acta Crystallogr. B45, 383–390.

    Google Scholar 

  4. C. Brock and J. Dunitz (1982).Acta Crystallogr. B38, 2218–2228.

    Google Scholar 

  5. W. Hummel, A. Raselli, and H. Burgi (1990).Acta Crystallogr. B46, 683–692.

    Google Scholar 

  6. K. Trueblood (1978).Acta Crystallogr. A34, 950–954.

    Google Scholar 

  7. D. Braga and F. Grepioni (1991).Organometallics 10, 1260–1268.

    Google Scholar 

  8. S. Aime, D. Braga, R. Gobetto, F. Grepioni, and A. Orlandi (1991).Inorganic Chem. 30, 951–956.

    Google Scholar 

  9. H. Burgi, A. Raselli, D. Braga, and F. Grepioni (1992).Acta Crystallogr. B48, 428–437.

    Google Scholar 

  10. S. Aime, R. Gobetto, F. Padovan, M. Botta, E. Rosenberg, and R. Gellert (1987).Organometallics 6, 2074–2078.

    Google Scholar 

  11. K. Trueblood (1989). THMA11 thermal vibration analysis computer program. University of California, Los Angeles.

    Google Scholar 

  12. W. Hummel, J. Hauser, and H. Burgi (1990).J. Mol. Graphics 8, 214–220.

    Google Scholar 

  13. G. Orpen (1980).J. Chem. Soc. Dalton Trans. 2509.

  14. M. Day, S. Hajela, K. Hardcastle, T. McPhillips, E. Rosenberg, M. Botta, R. Gobetto, L. Milone, D. Osella, and R. Gellert (1990).Organometallics 9, 913–924.

    Google Scholar 

  15. S. Aime, R. Gobetto, F. Padovan, M. Botta, E. Rosenberg, and R. Gellert (1987).Organometallics 6, 2074–2078.

    Google Scholar 

  16. B. Johnson and R. Benfield,in B. F. Johnson (ed.),Transition Metal Clusters (John Wiley and Sons, U.K., 1980), pp. 471–543.

    Google Scholar 

  17. S. Kabir and E. Rosenberg (unpublished results).

  18. E. Rosenberg (private communication).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardcastle, K.I., Irving, M. Hydride atom location and atomic dispersion parameter analysis in trimetal clusters using variable temperature X-ray diffraction. J Clust Sci 4, 77–88 (1993). https://doi.org/10.1007/BF01028386

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01028386

Key words

Navigation