Advertisement

Theoretical and Mathematical Physics

, Volume 15, Issue 1, pp 345–356 | Cite as

Convexity properties of Legendre transformations (variational methods in quantum field theory)

  • A. N. Vasil'ev
  • A. K. Kazanskii
Article
  • 49 Downloads

Keywords

Field Theory Quantum Field Theory Variational Method Convexity Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    C. de Dominicis and P. C. Martin, J. Math. Phys.,5, 14 (1964);5, 31 (1964).Google Scholar
  2. 2.
    C. de Dominicis, J. Math. Phys.,3, 983 (1962).Google Scholar
  3. 3.
    C. Jona-Lasinio, Nuovo Cimento,34, 1790 (1964).Google Scholar
  4. 4.
    G. Jona-Lasinio, Acta Phys. Hung.,19, 139 (1965).Google Scholar
  5. 5.
    H. D. Dahmen and G. Jona-Lasinio, Nuovo Cimento,52A, 807 (1967).Google Scholar
  6. 6.
    H. D. Dahmen and G. Jona-Lasinio, Nuovo Cimento,62A, 889 (1969).Google Scholar
  7. 7.
    T. D. Lee and C. N. Yang, Phys. Rev.,113, 1165 (1959);117, 22 (1960).Google Scholar
  8. 8.
    J. Luttinger and J. Ward, Phys. Rev.,118, 1417 (1960).Google Scholar
  9. 9.
    N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, Interscience (1959).Google Scholar
  10. 10.
    R. P. Feynman, Rev. Mod. Phys.,20, 376 (1947).Google Scholar
  11. 11.
    S. Schweber, An Introduction to Relativistic Quantum Field, Evanston, Illinois (1961).Google Scholar
  12. 12.
    K. Symanzik, Commun. Math. Phys.,16, 48 (1970).Google Scholar
  13. 13.
    K. Symanzik, Rendiconti della Scuola Internasionalle de Fizica “Enrico Fermi,” Varenna, 1968, Academic Press (1969).Google Scholar
  14. 14.
    J. Schwinger, Proc. Nath. Acad. Sci.,44, 956 (1958).Google Scholar
  15. 15.
    D. Ruelle, Nuovo Cimento,19, 356 (1961).Google Scholar
  16. 16.
    K. Symanzik, J. Math. Phys.,7, 510 (1966).Google Scholar
  17. 17.
    E. S. Fradkin, Dissertation [in Russian], in: Trudy FIAN,29 (1965).Google Scholar
  18. 18.
    I. M. Gel'fand and N. Ya. Vilenkin, Generalized Functions, Vol. 4, Academic Press (1964).Google Scholar
  19. 19.
    Th. A. Maris, Lett. Nuovo Cimento,2, 821 (1969).Google Scholar
  20. 20.
    L. van Hove, N. M. Hugenholtz, and I. P. Howland, Problems in the Quantum Theory of Many-Particle Systems, New York (1961).Google Scholar
  21. 21.
    J. Schwinger, Proc. Nat. Acad. Sci.,37, 452 (1951).Google Scholar
  22. 22.
    C. Bloch, Studies in Statistical Mechanics, Vol. 3 (1965).Google Scholar
  23. 23.
    A. N. Vasil'ev and A. K. Kazanskii, Teor. Mat. Fiz.,12, 352 (1972).Google Scholar
  24. 24.
    A. N. Vasil'ev and A. K. Kazanskii, Teor. Mat. Fiz.,14, 289 (1973).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • A. N. Vasil'ev
  • A. K. Kazanskii

There are no affiliations available

Personalised recommendations