Theoretical and Mathematical Physics

, Volume 82, Issue 1, pp 81–91 | Cite as

Construction of hydrodynamic asymptotics of the classical equilibrium correlation Green's functions by means of the Boltzmann equation

  • G. O. Balabanyan


Boltzmann Equation Equilibrium Correlation Classical Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. O. Balabanyan, Teor. Mat. Fiz.,80, 118 (1989).Google Scholar
  2. 2.
    N. N. Bogolyubov, “On the hydrodynamics of superfluids” Preprint R-1395 [in Russian], JINR, Dubna (1963); Selected Works, Vol. 3 [in Russian], Naukova Dumka, Kiev (1971), p. 244.Google Scholar
  3. 3.
    N. N. Bogolyubov (Jr) and B. I. Sadovnikov, Some Problems of Statistical Mechanics [in Russian], Vysshaya Shkola, Moscow (1975).Google Scholar
  4. 4.
    L. P. Kadanoff and P. S. Martin, Ann. Phys. (N.Y.),24, 419 (1963).Google Scholar
  5. 5.
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, Senjamin, New York (1975).Google Scholar
  6. 6.
    J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, Amsterdam (1972).Google Scholar
  7. 7.
    S. Chapman and T. G. Cowling, Mathematical Theory of Nonuniform Gases, Cambridge (1952).Google Scholar
  8. 8.
    L. Waldman, “Transport phenomena in gases at intermediate pressures,” in: Thermodynamics of Gases [Russian translation], Machinostroenie, Moscow (1970), p. 169–414.Google Scholar
  9. 9.
    B. I. Sadovnikov, Dokl. Akad. Nauk SSSR,164, 1023 (1965).Google Scholar
  10. 10.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley-Interscience, New York (1975).Google Scholar
  11. 11.
    M. M. Postnikov, Stable Polynomials [in Russian], Nauka, Moscow (1981).Google Scholar
  12. 12.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York (1965).Google Scholar
  13. 13.
    H. Z. Cummins and E. R. Pyke (eds.), Photon Correlation and Light Beating Spectroscopy, Plenum, New York (1974).Google Scholar
  14. 14.
    V. L. Bonch-Bruevich and S. V. Tyablikov, The Green's Function Method in Statistical Mechanics, North-Holland Publ. Co., Amsterdam (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • G. O. Balabanyan

There are no affiliations available

Personalised recommendations