Theoretical and Mathematical Physics

, Volume 82, Issue 1, pp 6–11 | Cite as

The Toda chain: Solutions with dynamical symmetry and classical orthogonal polynomials

  • A. S. Zhedanov


Orthogonal Polynomial Dynamical Symmetry Toda Chain Classical Orthogonal Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, The Theory of Solitons. The Inverse Scattering Method [in Russian], Nauka, Moscow (1980).Google Scholar
  2. 2.
    M. Toda, Theory of Nonlinear Lattices, Springer Series in Solid-State Sciences, Vol. 20, Springer, Berlin (1981).Google Scholar
  3. 3.
    I. A. Malkin and V. I. Man'ko, Dynamical Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).Google Scholar
  4. 4.
    A. M. Perelomov, Generalized Coherent States and their Applications [in Russian], Nauka, Moscow (1987).Google Scholar
  5. 5.
    A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable [in Russian], Nauka, Moscow (1985).Google Scholar
  6. 6.
    Ya. I. Granovskii and A. S. Zhedanov, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 5, 60 (1986).Google Scholar
  7. 7.
    W. Miller (Jr.), Symmetry and Separation of Variables [Russian translation], Mir, Moscow (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. S. Zhedanov

There are no affiliations available

Personalised recommendations