Advertisement

Journal of Protein Chemistry

, Volume 12, Issue 3, pp 351–363 | Cite as

Botulinum type A neurotoxin digested with pepsin yields 132, 97, 72, 45, 42, and 18 kD fragments

  • Juan A. Gimenez
  • Bibhuti R. DasGupta
Article

Abstract

Botulinum neurotoxin (NT) serotype A is a dichain protein made of a light and a heavy chain linked by at least one interchain disulfide; based on SDS-polyacrylamide gel electrophoresis their molecular masses appear as 147, 52, and 93 kD, respectively. Digestion of the NT with pepsin under controlledpH (4.3 and 6.0), time (1 and 24 hr), and temperature (25 and 30°C) produced 132, 97, 42, and 18 kD fragments. The three larger fragments were isolated by ionexchange chromatography. The 132 and 97 kD fragments are composed of 52 kD light chain and 72 and 45 kD fragments of the heavy chain, respectively. The sequences of amino terminal residues of these fragments were determined to identify the pepsin cleavage sites in the NT, which based on nucleotide sequence has 1295 amino acid residues (Binzet al., J. Biol. Chem.265, 9153, 1990). The 42 kD fragment, beginning with residue 866, is the C-terminal half of the heavy chain. The 18 kD fragment, of which the first 72 residues were identified beginning with residue 1147, represents the C-terminal segment of the heavy chain. The 132 kD fragment (residue 1 to ∼1146) is thus a truncated version of the NT without its 18 kD C-terminal segment. The 97 kD fragment (residue 1 to ∼865) is also a truncated NT with its 42 kD C-terminal segment excised. These peptic fragments contain one or two of the three functional domains of the NT (binds receptors, forms channels, and intracellularly inhibits exocytosis of the neurotransmitter) that can be used for structure-function studies of the NT. This report also demonstrates for the first time that of the six Cys residues 453, 790, 966, 1059, 1234, and 1279 located in the heavy chain the later four do not form interchain disulfide links with the light chain; however, Cys 1234 and 1279 contained within the 18 kD fragment form intrachain disulfide. The electrophoretic behaviors of type A NT and its fragments in native gels and their comparison with botulinum NT serotypes B and E as well as tetanus NT suggest that each NT forms dimers or other aggregates and the aggregation does not occur when the 42 kD C-terminal half of the heavy chain is excised. Thus, the C-terminal half of the heavy chain appears important in the self-association to form dimers.

Key words

Botulinum neurotoxin pepsin fragmentation chromatographic separation amino acid sequences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandyopadhyay, S., Clark, A. W., DasGupta, B. R., and Sathyamoorthy, V. (1987).J. Biol. Chem. 262, 2660–2663.Google Scholar
  2. Beers, W. H., and Reich, E. (1969).J. Biol. Chem. 244, 4473–4479.Google Scholar
  3. Betley, M. J., Somers, E., and DasGupta, B. R. (1989).Biochem. Biophys. Res. Commun. 162, 1388–1395.Google Scholar
  4. Binz, T., Kurazono, H., Wille, M., Frevert, J., Wernars, K., and Niemann, H. (1990).J. Biol. Chem. 265, 9153–9158.Google Scholar
  5. Bittner, M. A., DasGupta, B. R., and Holz, R. W. (1989).J. Biol. Chem. 264, 10,354–10,360.Google Scholar
  6. Blaustein, R. O., Germann, W. J., Finkelstein, A., and DasGupta, B. R. (1987).FEBS Letters 226, 115–120.Google Scholar
  7. DasGupta, B. R. (1989). InBotulinum Neurotoxin and Tetanus Toxin (Simpson L. L., ed.) Academic Press, San Diego, pp. 53–67.Google Scholar
  8. DasGupta, B. R. (1990a).J. Physiologie (Paris) 84, 220–228.Google Scholar
  9. DasGupta, B. R. (1990b). InMicrobial Toxins in Foods and Feeds: Cellular and Molecular Modes of Action (Pohland, A. E., Dowell, V. R., Jr., and Richard, J. L., eds.), Plenum Press, New York, pp. 75–89.Google Scholar
  10. DasGupta, B. R., Boroff, D. A., and Cheong, K. (1968).Biochem. Biophys. Acta 168, 522–531.Google Scholar
  11. DasGupta, B. R., and Dekleva, M. L. (1990).Biochimie 72, 661–664.Google Scholar
  12. DasGupta, B. R., and Sathyamoorthy, V. (1984).Toxicon 22, 415–424.Google Scholar
  13. DasGupta, B.R., and Sugiyama, H. (1978).Abstr. Am. Soc. Microbiol. (78th meeting) (Neidhart, F., ed.), ASM, p. 25.Google Scholar
  14. DasGupta, B. R., and Woody, M. A. (1984).Toxicon 22, 312–315.Google Scholar
  15. DePaiva, A., and Dolly, J. O. (1990).FEBS Lett. 277, 171–174.Google Scholar
  16. Dolly, J. O., Ashton, A. C., McInnes, C., Wadsworth, J. D. F., Poulain, B., Tauc, L., Shone, C. C., and Melling, J. (1990).J. Physiologie (Paris) 84, 237–246.Google Scholar
  17. Eisel, U., Jarausch, W., Goretzki, K., Henschen, A., Engels, J., Weller, U., Hudel, M., Habermann, E., and Neimann, H. (1986).EMBO J. 5, 2495–2502.Google Scholar
  18. Giménez, J. A., and DasGupta, B. R. (1990).Biochimie 72, 213–217.Google Scholar
  19. Giménez, J. A., and DasGupta, B. R. (1992).J. Protein Chem. 11, 255–264.Google Scholar
  20. Giménez, J. A., and Sugiyama, H. (1988).Infect. Immun. 56, 926–929.Google Scholar
  21. Habermann, E., and Dreyer, F. (1986).Current Topics in Microbiol. Immunol. 129, 93–179.Google Scholar
  22. Hatheway, C. L. (1990).Clin. Microbiol. Rev. 3, 66–98.Google Scholar
  23. Hoch, D. H., Romero-Mira, M., Erlich, B. E., Finkelstein, A., DasGupta, B. R., and Simpson, L. L. (1985).Proc. Nat. Acad. Sci. USA 82, 1692–1696.Google Scholar
  24. Inglis, S. A. (1983). InMethods in Enzymology (Hirs, C. H. W., and Timasheff, S. N., eds), Academic Press, New York, pp. 26–36.Google Scholar
  25. Kozaki, S., Miki, A., Kamata, Y., Ogasawara, J., and Sakaguchi, G. (1989).Infect. Immun. 57, 2634–2639.Google Scholar
  26. Krysinski, E. P., and Sugiyama, H. (1981).Appl. Environ. Microbiol. 41, 675–678.Google Scholar
  27. Krieglstein, K., Henschen, A., Weller, U., and Habermann, E. (1990).Eur. J. Biochem. 188, 39–45.Google Scholar
  28. Laemmli, U. K. (1970).Nature 227, 680–685.Google Scholar
  29. Lomneth, R., Martin, T. J. F., and DasGupta, B. R. (1991).J. Neurochem. 57, 1413–1421.Google Scholar
  30. Lomneth, R., Suszkiw, J. B., and DasGupta, B. R. (1990).Neuroscience Letters 113, 211–216.Google Scholar
  31. Matsuda, M. (1989). InBotulinum Neurotoxin and Tetanus Toxin (Simpson, L. L., ed.), Academic Press, San Diego, pp. 69–92.Google Scholar
  32. Matsudaira, P. (1987).J. Biol. Chem. 262, 10,035–10,038.Google Scholar
  33. Matsudaira, P. T., and Burgess, D. R. (1978).Anal. Biochem. 87, 386–396.Google Scholar
  34. Montecucco, C. (1986).TIBS 11, 314–317.Google Scholar
  35. Neurath, H. (1986).Chemica Scripta 27B, 221–229.Google Scholar
  36. Poulet, S., Hauser, D., Quanz, M., Niemann, H., and Popoff, M. R. (1992).Biochem. Biophys. Res. Commun. 183, 107–113.Google Scholar
  37. Sathyamoorthy, V., and DasGupta, B. R. (1985).J. Biol. Chem. 260, 10,461–10,466.Google Scholar
  38. Sathyamoorthy, V., DasGupta, B. R., Foley, J., and Niece, R. L. (1988)Arch. Biochem. Biophys. 266, 142–151.Google Scholar
  39. Schengrund, C.-L., Ringler, N. J., and DasGupta, B. R. (1992).Brain Research Bulletin 29, 917–924.Google Scholar
  40. Shone, C. C., Hambleton, P., and Melling, J. (1985).Eur. J. Biochem. 151, 75–82.Google Scholar
  41. Shone, C., Hambleton, P., and Melling, J. (1987).Eur. J. Biochem. 167, 175–180.Google Scholar
  42. Simpson, L. L., (1989). InBotulinum Neurotoxin and Tetanus Toxin (Simpson, L. L., ed.), Academic Press, Orlando, pp. 153–173.Google Scholar
  43. Singh, B. R., and DasGupta, B. R. (1989a).Mol. Cellular Biochem. 85, 67–73.Google Scholar
  44. Singh, B. R., and DasGupta, B. R. (1989b).Biophysical Chem. 34, 259–267.Google Scholar
  45. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985).Anal. Biochem. 150, 76–85.Google Scholar
  46. Stecher, B., Weller, U., Habermann, E., Gratzel, M., and Ahnert-Hilger, G. (1989).FES Lett. 255, 391–394.Google Scholar
  47. Stevens, R. C., Evenson, M. L., Tepp, W., and DasGupta, B. R. (1991).J. Mol. Biol. 222, 877–880.Google Scholar
  48. Thompson, E. E., Brehm, J. K., Oultram, J. D., Swinfield, T. J., Shone, C. C., Atkinson, T., Melling, J., and Minton, N. P. (1990).Eur. J. Biochem. 189, 73–81.Google Scholar
  49. Weller, U., Dauzenroth, M. E., Meyer Zu Heringdorf, D., and Habermann, E. (1989).Eur. J. Biochem. 182, 649–656.Google Scholar
  50. Whelan, S. M., Elmore, M. J., Bodsworth, N. J., Brehm, J. K., Atkinson, T., and Minton, N. P. (1992).Appl. Environ. Microbiol. 58, 2345–2354.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Juan A. Gimenez
    • 1
  • Bibhuti R. DasGupta
    • 1
  1. 1.Department of Food Microbiology and ToxicologyUniversity of WisconsinMadison

Personalised recommendations