Skip to main content
Log in

Innervation in cultures of fetal rodent skeletal muscle by organotypic explants of spinal cord from different animals

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Functional neuromuscular junctions formin vitro between spatially separated explants of fetal mammalian spinal cord and fetal skeletal muscle, even across species lines (rat and mouse). Differentiation and innervation occur when the muscle explant is oriented toward the ventral edge of the spinal cord cross-section, in the path of ventral-root nerve fibers. Arrival of these neurites enhances muscle development. This trophic influence is particularly apparent when cortisone is included in the nutrient fluid. Cross-striations begin to form toward the end of the first week of coupling, and acetylcholinesterase-positive loci appear by three weeks. In cultures maintained for 5–11 weeks, the more differentiated motor endplate structures show characteristic subneural infoldings, increased soleplate sarcoplasm, and terminal Schwann cells. Myelinated ventral-root fibers can be seen to bridge the gap between the cord and muscle explants, and to arborize and terminate on muscle fibers. Selective stimulation of ventral cord or ventral root can evoke widespread synchronized contractions of large numbers of fibers in the muscle expiant, demonstrating abundant formation of functional neuromuscular junctions between the coupled tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avery, G., Chow, M., Holtzer, H.: An experimental analysis of the development of the spinal column. J. exp. Zool.132, 409–423 (1956).

    Google Scholar 

  • Bornstein, M. B.: Reconstituted rat-tail collagen used as substrate for tissue culture on coverslips on Maximow slides and roller tubes. Lab. Invest.7, 134–140 (1958).

    Google Scholar 

  • —, Iwanami, H., Lehrer, G. M., Breitbart, L.: Observations on the appearance of neuromuscular relationships in cultured mouse tissues. Z. Zellforsch.92, 197–206 (1968).

    Google Scholar 

  • Bunge, M. B., Bunge, R. P., Peterson, E. R., Murray, M. R.: A light and electron microscope study of long-term organized cultures of rat dorsal root ganglia. J. Cell Biol.32, 439–466 (1967).

    Google Scholar 

  • Bunge, R. P., Bunge, M. B., Peterson, E. R.: An electron-microscope study of cultured rat spinal cord. J. Cell Biol.24, 163–191 (1965).

    Google Scholar 

  • Crain, S. M.: Resting and action potentials of cultured chick embryo spinal ganglion cells. J. comp. Neurol.104, 285–330 (1956).

    Google Scholar 

  • —: Development of “organotypic” bioelectric activities in central nervous tissues during maturation in culture. Int. Rev. Neurobiol.9, 1–43 (1966).

    Google Scholar 

  • —: Development of functional neuromuscular connections between separate expiants of fetal mammalian tissues after maturation in culture. Anat. Rec.160, 466 (1968).

    Google Scholar 

  • - Bioelectric interactions between cultured fetal rodent spinal cord and skeletal muscle after innervationin vitro. J. exp. Zool., in press (1970).

  • - Alfei, L., Peterson, E. R.: Neuromuscular transmission in cultures of adult human and rodent skeletal muscle after innervationin vitro by fetal rodent spinal cord. J. Neurobiol., in press (1970).

  • Grobstein, C.: Mechanisms of organogenetic tissue interaction. Nat. Cancer Inst. Monogr., No. 26 279–299 (1967).

    Google Scholar 

  • Harrison, R. G.: Observations on the living developing nerve fiber. Proc. Soc. exp. Biol. (N.Y.)4, 140–143 (1907).

    Google Scholar 

  • James, D. W., Tresman, R. L.:De novo formation of neuro-muscular junctions in tissue culture. Nature (Lond.)220, 384–385 (1968).

    Google Scholar 

  • — —, Tresman, R. L.: An electronmicroscopic study of thede novo formation of neuromuscular junctions in tissue culture. Z. Zellforsch.100, 126–140 (1969a).

    Google Scholar 

  • — —: Synaptic profiles in the outgrowth from chick spinal cordin vitro. Z. Zellforsch.101, 598–606 (1969b).

    Google Scholar 

  • Karnovsky, M. J.: The localization of cholinesterase activity in rat cardiac muscle by electron microscopy. J. Cell Biol.23, 217–232 (1963).

    Google Scholar 

  • Kelly, A. M., Zacks, S. I.: The fine structure of motor endplate morphogenesis. J. Cell Biol.42, 154–169 (1969).

    Google Scholar 

  • Koelle, G. B., Friedenwald, J. S.: A histochemical method for localizing cholinesterase activity. Proc. Soc. exp. Biol. (N.Y.)70, 617–622 (1949).

    Google Scholar 

  • Miledi, R., Slater, C. R.: Electrophysiology and electron microscopy of rat neuromuscular junctions after nerve degeneration. Proc. roy. Soc. B169, 289–306 (1968).

    Google Scholar 

  • Murray, M. R.: Muscle tissuesin vitro. In: Cells and tissue in culture, vol. 2 (E. N. Willmer, ed.), p. 311–372. New York: Academic Press 1965.

    Google Scholar 

  • Nakai, J.: The development of neuromuscular junctions in cultures of chick embryo tissues. J. exp. Zool.170, 85–106 (1969).

    Google Scholar 

  • Peterson, E. R., Alfei, L., Crain, S. M.: Innervationin vitro of adult human and rodent skeletal muscle by fetal neurons from rodent spinal cord. J. Cell Biol.43, 104a (1969).

    Google Scholar 

  • —, Alfei, L., Crain, S. M.: Re-innervation of denervated mammalian skeletal musclein vitro. Anat. Rec.160, 408 (1968).

    Google Scholar 

  • — —, Alfei, L., Crain, S. M.: Differentiation and prolonged maintenance of bioelectrically active spinal cord cultures (rat, chick and human). Z. Zellforsch.66, 130–154 (1965).

    Google Scholar 

  • Shimada, Y., Fischman, D. A., Moscona, A. A.: Formation of neuromuscular junctions in embryonic cell cultures. Proc. nat. Acad. Sci. (Wash.)62, 715–721 (1969).

    Google Scholar 

  • — — —: The development of nerve-muscle junctions in monolayer cultures of embryonic spinal cord and skeletal muscle cells. J. Cell Biol.43, 382–387 (1969).

    Google Scholar 

  • Szepsenwol, J.: La participación de las neuronas del arco reflejo en la primera actividad embrionaria. Soc. argent. biol. Rev.17, 374–384 (1941).

    Google Scholar 

  • —: A comparison of growth, differentiation, activity and action currents of heart and skeletal muscle in tissue culture. Anat. Rec.95, 125–146 (1946).

    Google Scholar 

  • —: Electrical excitability and spontaneous activity in expiants of skeletal and heart muscle of chick embryos. Anat. Rec.98, 67–85 (1947).

    Google Scholar 

  • Veneroni, G., Murray, M. R.: Formationde novo and development of neuromuscular junctionsin vitro. J. Embryol. exp. Morph.21, 369–382 (1969).

    Google Scholar 

  • Wolf, M. K.: Differentiation of neuronal types and synapses in myelinating cultures of mouse cerebellum. J. Cell Biol.22, 259–279 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by grants NS-06735, NS-06545 and NS-08770 from the National Institute of Neurological Diseases and Stroke, and the Nancy Louise Tryner Memorial Grant (No. 433) from the National Multiple Sclerosis Society.

Kennedy Scholar at the Rose F. Kennedy Center for Research in Mental Retardation and Human Development (Albert Einstein College of Medicine).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, E.R., Crain, S.M. Innervation in cultures of fetal rodent skeletal muscle by organotypic explants of spinal cord from different animals. Z.Zellforsch 106, 1–21 (1970). https://doi.org/10.1007/BF01027714

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027714

Key-Words

Navigation