Set-Valued Analysis

, Volume 1, Issue 2, pp 185–212 | Cite as

On the convergence of von Neumann's alternating projection algorithm for two sets

  • H. H. Bauschke
  • J. M. Borwein
Article

Abstract

We give several unifying results, interpretations, and examples regarding the convergence of the von Neumann alternating projection algorithm for two arbitrary closed convex nonempty subsets of a Hilbert space. Our research is formulated within the framework of Fejér monotonicity, convex and set-valued analysis. We also discuss the case of finitely many sets.

Mathematics Subject Classifications (1991)

Primary 47H09, 65J05 secondary 41A25, 41A50, 46C99, 47N10, 49M45, 65Kxx, 90C25 

Key words

Algorithm von Neumann's algorithm method alternating method iterative method projection cyclic projections successive projections Hilbert space convex sets linear convergence norm convergence weak convergence open mapping theorem multifunctions convex relations convex feasibility problem least-squares approximation angle between two subspaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauschke, H. H. and Borwein, J. M.: Dykstra's alternating projection algorithm for two sets. Technical Report CORR 92-15, Faculty of Mathematics, University of Waterloo, May 1992, to appear inJ. Approx. Theory.Google Scholar
  2. 2.
    Borwein, J. M.: Convex relations in analysis and optimization, in S. Schaible and W. T. Ziemba, (eds),Generalized Concavity in Optimization and Economics, Academic Press, New York, pp. 335–377.Google Scholar
  3. 3.
    Borwein, J. M.: Stability and regular points of inequality systems. J. Optim. Theory Appl.48(1) (1986), 9–52.Google Scholar
  4. 4.
    Borwein, J. M. and Lewis, A. S.: Partially finite convex programming Part I: Quasi relative interiors and duality theory,Math. Programming 57 (1992), 15–48.Google Scholar
  5. 5.
    Borwein, J. M. and Lewis, A. S.: A Partially finite convex programming Part II: Explicit lattice models.Math. Programming 57 (1992), 49–83.Google Scholar
  6. 6.
    Borwein, J. M. and Lewis, A. S.: A survey of convergence results for maximum entropy methods, Technical Report CORR 92-32, Faculty of Mathematics, University of Waterloo, September 1992.Google Scholar
  7. 7.
    Borwein, J. M., and Yost, D. T.: Absolute norms on vector lattices.Proc. Edinburgh Math. Soc.,27 (1984), 215–222.Google Scholar
  8. 8.
    Censor, Y.: On variable block algebraic reconstruction techniques, in G. T. Herman, A. K. Louis, and F. Natterer (eds),Mathematical Methods in Tomography, Springer, New York, 1990, pp. 133–140.Google Scholar
  9. 9.
    Deutsch, F.: Rate of convergence of the method of alternating projections, in B. Brosowski and F. Deutsch (eds),Parametric Optimization and Approximation, Birkhäuser, Basel, 1983, pp. 96–107.Google Scholar
  10. 10.
    Deutsch, F.: The method of alternating orthogonal projections, in S. P. Singh (ed),Approximation Theory, Spline Functions and Applications, Kluwer Academic Publ., Dordrecht, 1992, pp. 105–121.Google Scholar
  11. 11.
    Ekeland, I. and Temam, R.:Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.Google Scholar
  12. 12.
    Franchetti, C. and Light, W.: On the von Neumann alternating algorithm in Hilbert space,J. Math. Anal. Appl. 114 (1986), 305–314.Google Scholar
  13. 13.
    Friedricks, K.: On certain inequalities and characteristic value problems for analytic functions and for functions of two variables,Trans. Amer. Math. Soc. 41 (1937), 321–364.Google Scholar
  14. 14.
    Gubin, L. G., Polyak, B. T., and Raik, E. V.: The method of projections for finding the common point of convex sets,U.S.S.R. Comput. Math. and Math. Phys. 7 (6) (1967), 1–24.Google Scholar
  15. 15.
    Jameson, G. J. O.:Topology and Normed Spaces, Chapman and Hall, London, 1974.Google Scholar
  16. 16.
    Luenberger, D. G.:Optimization by Vector Space Methods, Wiley, New York, 1969.Google Scholar
  17. 17.
    Motzkin, T. S. and Schoenberg, I. J.: The relaxation method for linear inequalities,Canad. J. Math. 6 (1954), 393–404.Google Scholar
  18. 18.
    Pierra, G.: Decomposition through formalization in a product space,Math. Programming 28 (1984), 96–115.Google Scholar
  19. 19.
    Robinson, S. M.: Regularity and stability for convex multivalued functions.Math. Oper. Res. 1 (2) (1976), 130–143.Google Scholar
  20. 20.
    Rockafellar, R. T.:Convex Analysis, Princeton University Press, Princeton, NJ, 1970.Google Scholar
  21. 21.
    Rudin, W.:Functional Analysis, McGraw-Hill, New York, 1973.Google Scholar
  22. 22.
    Simonič, A.: Personal communication.Google Scholar
  23. 23.
    Tijs, S. H. and Borwein, J. M.: Some generalizations of Carathéodory's theorem via barycenters, with application to mathematical programming,Canad. Math. Bull. 23 (3) (1980), 339–346.Google Scholar
  24. 24.
    Van Tiel, J.:Convex Analysis, Wiley, New York, 1984.Google Scholar
  25. 25.
    von Neumann, J.:Functional Operators, Vol. II, Princeton University Press, 1950. (Reprint of mimeographed lecture notes first distributed in 1933.)Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • H. H. Bauschke
    • 1
  • J. M. Borwein
    • 2
  1. 1.Department of Mathematics, Statistics and Computing ScienceDalhousie UniversityHalifaxCanada
  2. 2.Department of Mathematics and StatisticsSimon Fraser UniversityBurnabyCanada

Personalised recommendations