Skip to main content
Log in

Comparison of vertical mixing schemes embedded in a global ocean GCM. Part II: Large scale circulation and water mass formation

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

The sensitivity of the circulation and water mass properties in a global ocean circulation model (OGCM) to the stability dependent vertical mixing parameterisations of Pacanowski and Philander (1981) and Henderson-Sellers (1985) is investigated. The work extends a previous study which examined upper ocean charateristics and mixed layer evolution resulting from these schemes incorporated in the OGCM and made a recommendation as to the appropriateness of the latter scheme for global models. Under the assumption of constant vertical eddy coefficients (the control case), the model climatology displays acceptable values of North Atlantic Deep Water formation, Antarctic Circumpolar Current strength, and Indonesian throughflow but an excessively deep and diffuse pycnocline structure with weak stratification in the deep ocean. It is found that these circulation and water mass properties are sensitive to the choice of parametrisation of vertical mixing and that the two stability dependent schemes are unable to perform satisfactorily over the global domain, instead being better suited to the tropics. Under conditions optimal for representing the tropical current and temperature structure, these schemes result in significant weakening of major currents (particularly, the ACC) and reductions in the rates of deep water formation and poleward heat transports. These deficiencies can only be remedied at the expense of the improvements to the simulation in the tropical part of the domain. The results presented indicate that the suggestions made in the previous study do not extend to situations where the deep ocean, and particularly, the global thermohaline circulation is important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Broecker, W. S., 1991: The great ocean conveyer.Oceanography,4, 79–89.

    Article  Google Scholar 

  • Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermobaline circulations.Nature,323, 301–304.

    Article  Google Scholar 

  • Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models.J. Phys. Oceanogr.,17, 970–985.

    Article  Google Scholar 

  • Bryan, K., 1969: A numerical method for the study of the circulation of the world ocean.J. Computat. Phys.,4, 347–376.

    Article  Google Scholar 

  • Bryan, K., 1984: Accelerating the convergence to equilibrium of ocean-climate models.J. Phys. Oceanogr.,14, 666–673.

    Article  Google Scholar 

  • Cox, M. D., 1987: Isopycnal diffusion in a z-coordinate ocean model.Ocean Modelling,74, 1–5.

    Google Scholar 

  • Cox, M. D., 1989: An idealised model of the world ocean. Part I: the global scale water massess.J. Phys. Oceanogr.,19, 1730–1752.

    Article  Google Scholar 

  • Danabasoglu, G., McWilliams, J. C., 1994: Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports.J. Climate., (submitted).

  • England, M. H., 1993: Representing the global-scale water masses in ocean general circulation models.J. Phys. Oceanogr. 23, 1523–1552.

    Article  Google Scholar 

  • Esbensen, S. K., Kushnir, Y., 1981: The heat budget of the global ocean: an atlas based on estimates from surface marine observations.Oregon State University Climate Research Institute Report,29, 27 pp.

  • Fieux, M. C., Delecluse, P., Ilahude, A. G., Kartavtseff, A., Mantisi, F., Molcard, R., Swallow, J. C., 1994: Measurements within the Pacific-Indian oceans throughflow region.Deep-Sea Res.,41, 1091–1130.

    Article  Google Scholar 

  • Gent, P. R., McWilliams, J. C., 1990: Isopycnal mixing in ocean circulation models.J. Phys. Oceanogr.,20, 150–155.

    Article  Google Scholar 

  • Godfrey, J. S., 1989: A Sverdrup model of the depth-integrated flow for the world ocean allowing for island circulations.Geophys. Astrophys. Fluid Dynamics,45, 89–112.

    Article  Google Scholar 

  • Gordon, A. L., 1986: Interocean exchange of thermocline water.J. Geophys. Res.,91, 5037–5046.

    Article  Google Scholar 

  • Hellerman, S., Rosenstein, M., 1983: Normal monthly wind-stress over the world ocean with error estimates.J. Phys. Oceanogr.,13, 1093–1104.

    Article  Google Scholar 

  • Henderson-Sellers, B., 1985: New formulation of eddu diffusion thermocline models.Appl. Math. Model.,9, 441–446.

    Article  Google Scholar 

  • Hirst, A. C., Cai, W., 1994: Sensitivity of a world ocean GCM to changes in subsurface mixing parameterization.J. Phys. Oceanogr.,24, 1256–1279.

    Article  Google Scholar 

  • Holland, W. R., 1973: Baroclinic and topographic influences on the transport in western boundary currents.Geophys. Fluid Dyn.,4, 187–210.

    Google Scholar 

  • Kraus, E. B., Turner, J. S., 1967: A one-dimensional model of the seasonal thermocline. II: The general theory and its consequences.Tellus,19, 98–105.

    Article  Google Scholar 

  • Large, W. G., McWilliams, J. C., Doney, S. C., 1994: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization.Rev. Geophys. (in press).

  • Levitus, S., 1982: Climatological atlas of the world ocean. NOAA Professional Paper,13, U.S. Govt. Printing Office, 173 pp.

  • Molinari, R. L., Fine, R. A., Johns, E., 1992: The deep western boundary current in the tropical North Atlantic Ocean.Deep-Sea Res.,39, 1967–1984.

    Article  Google Scholar 

  • Moore, A. M., Gordon, H. B., 1994: An investigation of climate drift in a global coupled ocean-atmosphere-sea-ice model.Clim. Dyn.,10, 81–96.

    Article  Google Scholar 

  • Moore, A. M., Reason, C. J. C., 1993: The response of a global ocean general circulation model to climatological surface boundary conditions for temperature and salinity.J. Phys. Oceanogr.,23, 300–328.

    Article  Google Scholar 

  • Nowlin, W. D., Jr., Klinck, J. M., 1986: The physics of the Antarctic Circumpolar Current.Rev. Geophys.,24, 469–491.

    Article  Google Scholar 

  • Pacanowski, R. C., Dixon, K., Rosati, A., 1991: The GFDL modular ocean model users guide, version 1.0. GFDL Ocean Group Technical Report No. 2, Princeton University.

  • Pacanowski, R. C., Philander, S. G. H., 1981: Parameterization of vertical mixing in numerical models of tropical oceans.J. Phys. Oceanogr.,11, 1443–1451.

    Article  Google Scholar 

  • Reason, C. J. C., Kuhnel, I., Henderson-Sellers, B., 1993: A comparison of vertical mixing schemes embedded in an OGCM with application to air-sea interactions and the evolution of SST anomalies.Meteorol. Atmos. Phys.,51, 55–71.

    Article  Google Scholar 

  • Trenberth, K. E., Solomon, A., 1994: The global heat balance: heat transports in the atmosphere and the ocean.Clim. Dyn., (submitted).

  • Whitworth, T., III, 1983: Monitoring the transport of the Antarctic Circumpolar Current at Drake Passage.J. Phys. Oceanogr.,13, 2045–2057.

    Article  Google Scholar 

  • Whitworth, T., III, Peterson, R. G., 1985: Volume transport of the Antarctic Circumpolar Current from bottom pressure measurements.J. Phys. Oceanogr.,15, 810–816.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reason, C.J.C. Comparison of vertical mixing schemes embedded in a global ocean GCM. Part II: Large scale circulation and water mass formation. Meteorl. Atmos. Phys. 58, 51–63 (1996). https://doi.org/10.1007/BF01027556

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027556

Keywords

Navigation