Meteorology and Atmospheric Physics

, Volume 58, Issue 1–4, pp 41–49 | Cite as

Frequency of quasi-geostrophic modes on hexagonal grids

  • J. M. Popović
  • S. Ničković
  • M. B. Gavrilov


Finite-difference analysis of Rossby modes has been performed for two staggered hexagonal grids. The solutions are compared with those obtained in analytical case and for rectangular grids. The result for one of the selected hexagonal grids better fits to the analytical solution then the results for the other considered grids. The obtained results may contribute to better understanding of the appropriateness of hexagonal grids in atmospheric and oceanographic modeling and numerical computations.


Vorticity Rossby Wave Rectangular Grid Geostrophic Wind Vorticity Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa, A., 1970: Numerical simulation of large-scale atmospheric motions. In Numerical solution of field problems in continuum physics. Proc. Symp. Appl. Math., Durham, N. C., 1968. SIAM-AMS Proc.,2, 24–40.Google Scholar
  2. Arakawa, A., 1972: Design of the UCLA general circulation model. Numerical Simulation of Weather and Climate, Dept. of Meteorology. Univ. of California, Los Angeles, Tech. Rep. No. 7, 116 pp.Google Scholar
  3. Gavrilov, M., 1985: Frequency of quasi-geostrophic modes over grid points and definition of geostrophic wind.Idöjárás,89, 77–85.Google Scholar
  4. Holton, J. R., 1979:An Introduction to Dynamic Meteorology. New York: Academic Press, 391 pp.Google Scholar
  5. Mesinger, F., 1979: Dependence of vorticity analogue and the Rossby wave phase speed on the choice of horizontal grid. Bulletin T. LXIV de l'Académie serbe des sciences et des arts, No. 10, 15 pp.Google Scholar
  6. Ničković, S., 1994: On the use of hexagonal grids for simulation of atmospheric processes.Contrib. Atmos. Phys.,67, (in press).Google Scholar
  7. Sadourny, R., Arakawa, A., Mintz, Y., 1968: Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere.Mon Wea. Rev.,96, 351–356.CrossRefGoogle Scholar
  8. Sadourny, R., Morel, P., 1969: A finite-difference approximation of the primitive equations for a hexagonal grid on a plane.Mon. Wea. Rev.,97, 439–445.CrossRefGoogle Scholar
  9. Steppeler, J., Navon, I. M., Lu, H. I., 1990: Finite-element schemes for extended integrations of atmospheric models.J. Comp. Phys.,89, 96–124.CrossRefGoogle Scholar
  10. Thacker, W. C., 1977: Irregular grid finite-difference techniques: Simulations of oscillations in shallow circular basins.J. Phys. Ocean.,7, 284–292.CrossRefGoogle Scholar
  11. Thacker, W. C., 1978: Comparison of finite-element and finite-difference schemes. Part II: Two-dimensional gravity wave motion.J. Phys. Ocean.,8, 680–689.CrossRefGoogle Scholar
  12. Williamson, D., 1968: Integration of the barotropic vorticity equation on a spherical geodesic grid.Tellus,20, 642–653.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. M. Popović
    • 1
  • S. Ničković
    • 1
    • 2
  • M. B. Gavrilov
    • 1
  1. 1.Institute of PhysicsBelgradeYugoslavia
  2. 2.National Meteorological InstituteTunis-CarthageTunisia

Personalised recommendations