Advertisement

Journal of Applied Electrochemistry

, Volume 22, Issue 8, pp 728–732 | Cite as

Electrochemical investigation of the diffusion of lithium in β-LiAl alloy at room temperature

  • N. Kumagai
  • Y. Kikuchi
  • K. Tanno
  • F. Lantelme
  • M. Chemla
Papers

Abstract

The chemical diffusion coefficients of lithium in β-LiAl alloy were measured by the use of transient techniques such as chronopotentiometry, chronoamperometry and a.c. impedance spectroscopy in 1 M LiClO4-propylene carbonate at 25° C. A β-LiAl layer, formed by electrodepositing lithium on a thin aluminium substrate having a microstructure of preferred (100) orientation, was mainly used. The values of the diffusion coefficients were found to be of the order of 10−10 cm2s−1, which are close to those reported in the literature. A scatter in the coefficient was discussed in terms of the formation and disruption of the passivating layer on the alloy.

Keywords

Aluminium Spectroscopy Microstructure Physical Chemistry Lithium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. N. Dey,J. Electrochem. Soc. 118 (1971) 1547.Google Scholar
  2. [2]
    B. M. L. Rao, R. W. Francis and H. A. Christopher,124 (1977) 1490.Google Scholar
  3. [3]
    J. O. Besenhard,J. Electroanal. Chem.,94,(1978) 77.Google Scholar
  4. [4]
    I. Epelboin, M. Froment, M. Garreau, J. Thevenin and D. Warin,J. Electrochem. Soc. 127 (1980) 2100.Google Scholar
  5. [5]
    A. S. Baranski and W. R. Fawcett,129 (1982) 901.Google Scholar
  6. [6]
    T. R. Jow and C. C. Liang,129 (1983) 1429.Google Scholar
  7. [7]
    Y. Geronov, P. Zlatilova and R. V. Moshtev,J. Power Sources 12 (1984) 145.Google Scholar
  8. [8]
    W. C. Maskell and J. R. Owen,J. Electrochem. Soc. 132 (1985) 1602.Google Scholar
  9. [9]
    N. Kumagai, Y. Kikuchi and K. Tanno,J. Appl. Electrochem. in press (1992).Google Scholar
  10. [10]
    F. Lantelme, D. Derja, N. Kumagai and M. Chemla,Electrochim. Acta 34 (1989) 1371.Google Scholar
  11. [11]
    H. J. S. Sand,Phil. Mag. 1 (1906) 229.Google Scholar
  12. [12]
    Z. Karaogranoff,Z. Electrochem. 12 (1906) 5.Google Scholar
  13. [13]
    C. Ho, I. D. Raistrick and R. A. Ruggins,J. Electrochem. Soc. 127 (1980) 343.Google Scholar
  14. [14]
    A. Honders and G. H. Broers,Solid State Ionics 15 (1985) 173.Google Scholar
  15. [15]
    N. Kumagai and K. Tanno,Electrochim. Acta 36 (1991) 935.Google Scholar
  16. [16]
    R. D. Armstrong, O. R. Brown and R. P. Pram,J. Power Sources 28 (1989) 259.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • N. Kumagai
    • 1
  • Y. Kikuchi
    • 1
  • K. Tanno
    • 1
  • F. Lantelme
    • 2
  • M. Chemla
    • 2
  1. 1.Department of Applied Chemistry, Faculty of EngineeringIwate UniversityMoriokaJapan
  2. 2.Laboratoire d'Electrochimie, U. A. 430Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations