Advertisement

Meteorology and Atmospheric Physics

, Volume 46, Issue 3–4, pp 155–168 | Cite as

Subgrid-scale vertical heat fluxes for the African region

  • Th. Burkhardt
Article

Summary

A diagnostic model for complete heat budgets in the free atmosphere is presented and is applied to the African-Atlantic sector between 35°S–30°N for May 1979. The model is based on the conservation equations for latent and sensible heat. These are evaluated in a form integrated over 24 hours in time and over atmospheric boxes of 2.5°×2.5° in horizontal and 100 hPa in vertical direction. Grid-scale input data are the 3D-ECMWF-diagnoses of the FGGE period plus parameterized fields of surface rain, evaporation and sensible Heat flux. This leads to an overspecification of latent and sensible heat budgets for any atmospheric column between surface and top of the atmosphere and thus yields an objective column imbalance. In order to separate the vertical subscale fluxes of rain, moisture and heat in the free atmosphere the model uses a closure assumption for the coupling between moisture and sensible heat flux as well as one for the vertical imbalance profiles; it is demonstrated that the budgets are not too sensitive with respect to these parameterizations.

Results are presented in terms of vertical profiles of the subscale vertical fluxes of rain, moisture and heat. These are interpeted as measures of convective activity, with particular emphasis on the ITCZ. May 1979 averages as well as results for a respresentative single day are discussed. The imbalance (=the error) can be sufficiently well separated from the signal. It is shown that the low-level mass flux divergence does not coincide with the position of the ITCZ while the maximum of the subscale fluxes does coincide. Over the continent, it is not the horizontal mass flux convergence which feeds the ITCZ and the rainbelt but rather the subscale moisture flux and its convergence in the vertical. Over the Saharan latitudes, there is considerable convective flux of sensible heat, but not of latent heat. Over the ocean, deep convection in the ITCZ is weaker than over Africa, and it is consistently correlated with upward converging subscale moisture flux. The fields of the subscale vertical fluxes are coherent in space and time. It is argued from these results that the presented diagnostic model is potentially useful for testing parameterizations of convection in general circulation and climate models.

Keywords

Heat Flux Mass Flux Deep Convection Moisture Flux Heat Budget 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, P. A., 1979: The relationship between practional coverage of high cloud and rainfall accumulations during GATE over the B-Scale array.Mon. Wea. Rev.,107, 1382–1387.Google Scholar
  2. Beutgen, A., 1990: Flächenniederschlag in Afrika aus IRMETEOSAT-Daten. Met. Inst. d. Univ. Bonn, Diplomathesis, 95 p.Google Scholar
  3. Burkhardt, T., 1990: Subgrid-scale vertical energy fluxes over the African-Atlantic region.Bonner Met. Abh.,39, 105p.Google Scholar
  4. Budyko, M. I., 1963:Atlas der Wärmebilanz der Erdkugel. Internat. Geophys. Komitee d. Akad. d. Wissenschaften d. UdSSR, Geophys. Hauptobs. A. I. Voeikov, Moskau.Google Scholar
  5. Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa.J. Atmos. Sci.,29, 77–90.Google Scholar
  6. Dopplick, T., 1979: Radiative heating of the global atmosphere: Corrigendum.J. Atmos. Sci.,36, 1812–1817.Google Scholar
  7. Eberz, B., 1987: Westwärts wandernde atmosphärische Wellenstörungen der afrikanischen Tropen: Ihre Dynamik und Energetik. Mitteilungen aus dem Institut für Geophysik und Meteorologie der Universität zu Köln37, 77 p.Google Scholar
  8. Emeis, S., Hantel, M., 1984: ALPEX-diagnostics: subsynoptic heat fluxes.Contrib. Atmos. Phys.,57, 495–511.Google Scholar
  9. Emeis, S., 1985: Subsynoptic vertical heat fluxes in the atmosphere over Europe.Bonner Meteorol. Abhandl.,32, 106 p.Google Scholar
  10. Emeis, S., 1986: Subsynoptic vertical energy fluxes in midlatitude cyclones.Meteorol. Rdsch.,39, 161–172.Google Scholar
  11. Fuhrhop, R., 1988: Einfluß von Wellenstörungen auf die konvektive Bewölkung im Bereich der innertropischen Konvergenzzone über Afrika. Inst. f. Meeresk. der Univ. zu Kiel, Diplomathesis, 99 p.Google Scholar
  12. Hacker, J. M., 1981: Der Massen-und Energiehaushalt der Nordhemisphere,Bonner Meteorol. Abhandl.,27, 93 p.Google Scholar
  13. Hantel, M., 1982: Alpex. Subsynoptische Vertikaltransporte.Ann. Met. (N. F.),19, 79–80.Google Scholar
  14. Hantel, M., 1987: Subsynoptic vertical heat fluxes from highresolution synoptic budgets.Meteorol. Atmos. Phys.,36, 24–44.Google Scholar
  15. Hantel, M., 1989: Eine neue Gleischung für die atmosphärischen Energiehaushalte.Wetter und Leben,41, 95–108.Google Scholar
  16. Hantel, M., Haase, S., 1983: Mass consistent heat budget of the zonal atmosphere.Bonner Met. Abh.,29, 84 p.Google Scholar
  17. Heckley, W. A., 1985: Systematic errors of the ECMWF forecasting system in tropical regions.Quart. J. Roy. Meteor. Soc.,111, 709–738.Google Scholar
  18. Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: implications for cumulus parameterization.Mon. Wea. Rev.,112, 1590–1601.Google Scholar
  19. Nitta, T., 1972: Energy budget of wave disturbances over the Marshall Islands during the years of 1956 and 1958.J. Meteor. Soc. Japan,50, 71–84.Google Scholar
  20. Reed, R. J., Recker, E. E., 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific.J. Atmos. Sci.,28, 1117–1133.Google Scholar
  21. Riehl, H., Malkus, J. S., 1958: On the heat balance in the equatorial through zone.Geophysica,6, 503–538.Google Scholar
  22. Shao, Y., Hantel, M., 1989: Vertical subsynoptic momentum flux in the atmosphere over central Europe.Quart. J. Roy. Meteor. Soc.,115, 1355–1372.Google Scholar
  23. Thompson, R. M., Payne, S. W., Recker, E. E., Reed, R. J., 1979: Structure and properties of synoptic-scale wave disturbances in the Innertropical Convergence Zone of the Eastern Atlantic.J. Atmos. Sci.,36, 53–72.Google Scholar
  24. Yanai, M., Esbensen, S., Chu, J.-H., 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets.J. Atmos. Sci.,30, 611–627.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Th. Burkhardt
    • 1
  1. 1.Meteorologisches Institut der Universität BonnBonnFederal Republic of Germany

Personalised recommendations