Skip to main content
Log in

Cascades and self-organized criticality

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We generalize the model of self-organized critical systems to cases where due to some internal degrees of freedom the local conservation law is violated. This can be realized by taking a transfer ratio different from the critical one in a sand pile model (global violation) or allowing fluctuations around the critical ratio (local violation). In the first case the deviation from the critical ratioR is a critical parameter and the characteristic avalanche size diverges as |R|ψ. In the second case the global conservation assures criticality; however, our numerical results indicate that the model is in a new universality class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. P. Bak, C. Tang, and K. Wiesenfeld,Phys. Rev. Lett. 59:381 (1987);Phys. Rev. A 38:364 (1988).

    Google Scholar 

  2. S. S. Manna,J. Stat. Phys. 59:509 (1990).

    Google Scholar 

  3. P. Grassberger and S. S. Manna,J. Phys. (Paris)51:1077 (1990).

    Google Scholar 

  4. B. Grossmann, H. Guo, and M. Grant,Phys. Rev. A 41:1495 (1980).

    Google Scholar 

  5. J. Kertész and L. B. Kiss,J. Phys. A 23:L433 (1990).

    Google Scholar 

  6. J. H. Jensen, K. Christensen, and H. C. Fogedby,Phys. Rev. B 40:7425 (1989).

    Google Scholar 

  7. H. M. Jaeger, Liu Chu-heng, and S. R. Nagel,Phys. Rev. Lett. 62:40 (1989).

    Google Scholar 

  8. I. M. Jánosi and V. K. Horvath,Phys. Rev. A 40:5232 (1989).

    Google Scholar 

  9. K. L. Babcock and R. M. Westerwelt,Phys. Rev. Lett. 64:2168 (1990).

    Google Scholar 

  10. J. M. Carlson and J. S. Langer,Phys. Rev. Lett. 62:2632 (1989).

    Google Scholar 

  11. T. Vicsek,Fractal Growth Phenomena (World Scientific, Singapore, 1989).

    Google Scholar 

  12. T. Hwa and M. Kardar,Phys. Rev. Lett. 62:1813 (1989).

    Google Scholar 

  13. Y. C. Zhang,Phys. Rev. Lett. 63:470 (1989).

    Google Scholar 

  14. D. Dhar and R. Rhamaswamy,Phys. Rev. Lett. 63:1659 (1989).

    Google Scholar 

  15. S. P. Obukhov, inRandom Fluctuations and Pattern Growth, H. E. Stanley and N. Ostrowsky, eds. (Kluwer, Boston, 1989).

    Google Scholar 

  16. C. Tang and P. Bak,Phys. Rev. Lett. 60:2347 (1988).

    Google Scholar 

  17. G. Grinstein, D.-H. Lee, and S. Sachdev,Phys. Rev. Lett. 64:1927 (1990).

    Google Scholar 

  18. A. M. Weinberg and E. P. Wigner,The Physical Theory of Nuclear Chain Reactions (University of Chicago Press, Chicago, Illinois, 1958).

    Google Scholar 

  19. C. L. Hemenway, R. W. Henry, and M. Caulton,Physical Electronics, 2nd ed. (Wiley, New York, 1967).

    Google Scholar 

  20. H. Haken,Synergetics, 3rd ed. (Springer, Heidelberg, 1983).

    Google Scholar 

  21. L. P. Kadanoff, S. R. Nagel, L. Wu, and S. Zhou,Phys. Rev. A 39:6524 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Institute for Experimental Physics, JATE University, Dóm tèr 9, Szeged, H-6720 Hungary.

On leave from Institute for Technical Physics, H-1325 Budapest, Hungary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manna, S.S., Kiss, L.B. & Kertész, J. Cascades and self-organized criticality. J Stat Phys 61, 923–932 (1990). https://doi.org/10.1007/BF01027312

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027312

Key words

Navigation