Journal of Statistical Physics

, Volume 61, Issue 3–4, pp 913–921 | Cite as

Multifractal magnetization on hierarchical lattices

  • W. A. M. Morgado
  • S. Coutinho
  • E. M. F. Curado
Short Communications

Abstract

A new approach is applied to show that the local magnetization of the ferromagnetic Ising model on hierarchical lattices has a multifractal structure at the critical point. Thef(α) function characterizing its multifractality is presented and discussed for the diamond hierarchical lattice. Distinct exact critical exponents for the average magnetization and for the local magnetization of the deepest sites are found. The average magnetization (as function of the temperature) is also calculated. The critical exponent of the susceptibility is estimated using finite-size scale arguments.

Key words

Multifractality Ising model hierarchical lattices magnetization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Migdal,Sov. Phys. JETP 69:810, 1457 (1975); L. P. Kadanoff,Ann. Phys. 100:359 (1976).Google Scholar
  2. 2.
    P. M. Bleher and E. Zälys,Commun. Math. Phys. 67:17 (1979); A. N. Berker and S. Ostlund,J. Phys. C 12:4961 (1979).Google Scholar
  3. 3.
    R. B. Griffiths and M. Kaufman,Phys. Rev. B 26:5022 (1982).Google Scholar
  4. 4.
    P. M. Bleher and E. Zälys,Commun. Math. Phys. 120:409 (1989).Google Scholar
  5. 5.
    C. Tsallis,Kinam 3:79 (1981).Google Scholar
  6. 6.
    M. Kaufman and R. B. Griffiths,J. Phys. A 15:1 239 (1982).Google Scholar
  7. 7.
    S. R. Mckay and A. N. Berker,Phys. Rev. B 29:1315 (1984).Google Scholar
  8. 8.
    G. Györgyi and I. I. Satija,Phys. Rev. Lett. 62:446 (1989).Google Scholar
  9. 9.
    B. Derrida, L. de Sàze, and C. Itzykson,J. Stat. Phys. 33:559 (1982); see also C. Itzykson and J. M. Luck,Progress in Physics, Vol. 11,Critical Phenomena (1983 Brasov School Conference; (Birkhäuser, Boston, 1985).Google Scholar
  10. 10.
    K. Weierstrass,Mathematishe Werke (Mayer and Müller, Berlim, 1895); T. Tél,Z. Naturforsch. 43a:1154 (1988).Google Scholar
  11. 11.
    T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman,Phys. Rev. A 33:1141 (1986).Google Scholar
  12. 12.
    B. B. Mandelbrot, inFluctuations and Pattern Growth, H. E. Stanley and N. Ostrowsky, eds. (Kluwer, Dordrecht).Google Scholar
  13. 13.
    A. O. Caride and C. Tsallis,J. Phys. A 20:L667 (1987); J. R. Melrose,J. Phys. A 16:3077 (1983).Google Scholar
  14. 14.
    N. Ito and M. Suzuki,Prog. Theor. Phys. 77:1391 (1987);J. Phys. (Paris)49:C8-1565 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • W. A. M. Morgado
    • 1
  • S. Coutinho
    • 1
  • E. M. F. Curado
    • 1
  1. 1.Centro Brasileiro de Pesquisas FisicasRio de JaneiroBrazil

Personalised recommendations