Journal of Statistical Physics

, Volume 61, Issue 3–4, pp 909–911 | Cite as

Comments on “power-law falloff in the Kosterlitz-Thouless phase of a two-dimensional lattice Coulomb gas”

  • Domingos H. U. Marchetti
Short Communications


A simple argument is presented by which one can show that the critical inverse temperatureβ c of a two-dimensional Coulomb gas (standard or hard-core) with activityz satisfies\(\beta _c \leqslant \mathop \beta \limits^ - \), where\(\mathop \beta \limits^ - = \mathop \beta \limits^ - (z) \to (1 + \sqrt 3 ) 8\pi /(3 - \sqrt 3 )\) in the low-activity limit. Previous results yield\(\mathop \beta \limits^ - (z) \to 24\pi \).

Key words

Coulomb gas Kosterlitz-Thouless phase power-law falloff critical temperature multiscale analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. U. Marchetti, A. Klein, and J. F. Perez,J. Stat. Phys. 60:137 (1990).Google Scholar
  2. 2.
    T. Spencer, Private communication.Google Scholar
  3. 3.
    J. Frohlich and T. Spencer,Commun. Math. Phys. 81:525 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Domingos H. U. Marchetti
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew Brunswick

Personalised recommendations