Skip to main content
Log in

Exact equations of state for one-dimensional chain fluids

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using the isothermal-isobaric ensemble, exact equations of state are derived for three classical models of one-dimensional chain fluids. Each chain molecule is modeled by a series of linked sites which interact through nearest-neighbor bond potentials. In two of the models, the intramolecular bonds are modeled by infinitely deep square-well potentials, while in the third, the bonds are modeled by a harmonic potential. Intermolecular interactions are modeled by a hard-rod potential. Numerical results are presented for dimer and 8-mer fluids which illustrate the influence of chain length, well width and spring constant on the compressibility factor. The effect of adding an infinitely weak, infinitely long-ranged attractive interaction between the sites is also considered. The attractive tail induces a first-order phase transition of the gas-liquid type in all of the chain models. For certain values of the model parameters, however, two of the models show evidence of a second gas-liquid type transition, which appears to be associated with chain collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord Rayleigh,Nature 45:80 (1891).

    Google Scholar 

  2. L. Tonks,Phys. Rev. 50:955 (1936).

    Google Scholar 

  3. H. Takahashi,Proc. Phys.-Math. Soc. Japan (Nippon Suugaku-Buturigakkausi Kizi, Tokyo)24:60 (1942) [reprinted in ref. 5].

    Google Scholar 

  4. F. Gürsey,Proc. Camb. Phil. Soc. 46:182 (1950).

    Google Scholar 

  5. E. H. Lieb and D. C. Mattis,Mathematical Physics in One Dimension (Academic, New York, 1966), pp. 3–24.

    Google Scholar 

  6. P. Kasperkovitz and J. Reisenberger,Phys. Rev. A 31:2639 (1985).

    Google Scholar 

  7. A. Robledo and J. S. Rowlinson,Mol. Phys. 58:711 (1986).

    Google Scholar 

  8. A. Münster,Statistical Thermodynamics (Springer-Verlag, Berlin, 1969), Vol. I, pp. 292–316.

    Google Scholar 

  9. D. Koppel,Phys. Fluids 6:609 (1963).

    Google Scholar 

  10. R. S. Northcote and R. B. Potts,Phys. Fluids 7:475 (1964).

    Google Scholar 

  11. R. H. Walmsley,J. Chem. Phys. 88:4473 (1988).

    Google Scholar 

  12. M. Kac,Phys. Fluids 2:8 (1959).

    Google Scholar 

  13. G. Baker,Phys. Rev. 122:1477 (1961).

    Google Scholar 

  14. M. Kac, G. Uhlenbeck, and P. Hemmer,J. Math. Phys. 4:216 (1963) [reprinted in ref. 5].

    Google Scholar 

  15. L. Van Hove,Physica 16:137 (1950) [reprinted in ref. 5].

    Google Scholar 

  16. J. M. Kincaid, G. Stell, and C. K. Hall,J. Chem. Phys. 65:2161 (1976).

    Google Scholar 

  17. M. Bishop and M. A. Boonstra,Am. J. Phys. 51:564 (1983).

    Google Scholar 

  18. J. A. Barker,Aust. J. Phys. 15:127 (1962).

    Google Scholar 

  19. C. N. Satterfield,Heterogeneous Catalysis in Practice (McGraw-Hill, New York, 1980), pp. 164–177, 244–247, 258–259.

    Google Scholar 

  20. T. A. Weber,J. Chem. Phys. 69:2347 (1978);70:4277 (1979).

    Google Scholar 

  21. E. Helfand, Z. R. Wasserman, and T. A. Weber,J. Chem. Phys. 70:2016 (1979); E. Helfand, Z. R. Wasserman, and T. A. Weber,Macromolecules 13:526 (1980).

    Google Scholar 

  22. A. Warshel and S. Lifson,J. Chem. Phys. 53:582 (1970).

    Google Scholar 

  23. J.-P. Ryckaert and A. Bellemans,Chem. Phys. Lett. 30:123 (1975); J.-P. Ryckaert and A. Bellemans,Faraday Disc. Chem. Soc. 66:95 (1978); D. W. Rebertus, B. J. Berne, and D. Chandler,J. Chem. Phys. 70:3395 (1979); J. H. R. Clarke and D. Brown,Mol. Phys. 58:815 (1986); P. A. Wielopolski and E. R. Smith,J. Chem. Phys. 84:6940 (1986); R. Edberg, G. P. Morriss, and D. J. Evans,J. Chem. Phys. 86:4555 (1987); G. Maréchal, J.-P. Ryckaert, and A. Bellemans,Mol. Phys. 61:333 (1987).

    Google Scholar 

  24. G. Ciccotti and J.-P. Ryckaert,Comp. Phys. Rep. 4:345 (1986).

    Google Scholar 

  25. J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen,J. Comp. Phys. 23:327 (1977); W. F. van Gunsteren and H. J. C. Berendsen,Mol. Phys. 34:1311 (1977); R. Edberg, D. J. Evans, and G. P. Morriss,J. Chem. Phys. 84:6933 (1986).

    Google Scholar 

  26. D. C. Rapaport,J. Phys. A 11:L213 (1978).

    Google Scholar 

  27. D. C. Rapaport,J. Chem. Phys. 71:3299 (1979).

    Google Scholar 

  28. G. A. Chapela, S. E. Martinez-Casas, and J. Alejandre,Kinam (Mexico)A 6:143 (1984); G. A. Chapela, S. E. Martinez-Casas, and J. Alejandre,Mol. Phys. 53:139 (1984); J. Alejandre and G. A. Chapela,Mol. Phys. 61:1119 (1987).

    Google Scholar 

  29. G. A. Chapela and S. E. Martinez-Casas,Mol. Phys. 59:1113 (1986).

    Google Scholar 

  30. B. J. Alder and T. E. Wainwright,J. Chem. Phys. 31:459 (1959).

    Google Scholar 

  31. D. J. Tildesley and W. B. Streett,Mol. Phys. 41:85 (1980).

    Google Scholar 

  32. A. Bellemans, J. Orban, and D. Van Belle,Mol. Phys. 39:781 (1980).

    Google Scholar 

  33. W. W. Wood,J. Chem. Phys. 48:415 (1968).

    Google Scholar 

  34. T. L. Hill,Statistical Mechanics (Dover, New York, 1987), pp. 59–80.

    Google Scholar 

  35. R. A. Sack,Mol. Phys. 2:8 (1959).

    Google Scholar 

  36. W. B. Brown,Mol. Phys. 1:68 (1958).

    Google Scholar 

  37. M. Abramowitz and I. A. Segun,Handbook of Mathematical Functions (Dover, New York, 1968), p. 298.

    Google Scholar 

  38. D. A. McQuarrie,Statistical Mechanics (Harper & Row, New York, 1976), p. 95.

    Google Scholar 

  39. L. Pauling,The Nature of the Chemical Bond, 3rd ed. (Cornell, Ithaca, New York, 1960), pp. 225–228.

    Google Scholar 

  40. J. L. Lebowitz and O. Penrose,J. Math. Phys. 7:98 (1966).

    Google Scholar 

  41. K. Huang,Statistical Mechanics, 2nd ed. (Wiley, New York, 1987), pp. 41–43.

    Google Scholar 

  42. C. K. Hall and G. Stell,Phys. Rev. A 7:1679 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honnell, K.G., Hall, C.K. Exact equations of state for one-dimensional chain fluids. J Stat Phys 61, 803–842 (1990). https://doi.org/10.1007/BF01027302

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027302

Key words

Navigation