Skip to main content
Log in

Multifractal structure of fully developed hydrodynamic turbulence. I. Kolmogorov's third hypothesis revisited

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss intermittency effects in fully developed hydrodynamic turbulence. It is shown that the application of the bounded log-normal distribution to the fluctuations of the local energy dissipation rate resolves some basic difficulties related to Kolmogorov's third hypothesis and gives a good agreement with experiment. The nonlinear interaction of the large-scale and inertial-range turbulent pulsations of the velocities may explain the observable characteristics of the intermittency. We give also a detailed comparison of the results obtained with the use of the bounded log-normal distribution with that obtained in the framework of the homogeneous and randomβ-models, a two-scale Cantor set approximation, and the original unbounded log-normal distribution suggested by Kolmogorov and Obukhov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics Vol. II (MIT, Cambridge, 1975).

    Google Scholar 

  2. L. D. Landau and E. M. Lifshitz,Fluid Mechanics, 2nd ed. (Pergamon Press, 1987).

  3. C. W. Van Atta and J. Park, inLecture Notes in Physics, No. 12 (Springer, 1972), pp. 402–426.

  4. V. M. Vasilenko, M. N. Lyubimtsev, and R. V. Ozmidov,Inz. Atmos. Ocean. Phys. 11:926 (1975).

    Google Scholar 

  5. R. A. Antonia, B. R. Satyaprakash, and A. J. Chambers,Phys. Fluids 25:29 (1982).

    Google Scholar 

  6. F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia,J. Fluid Mech. 140:63 (1984).

    Google Scholar 

  7. A. M. Yaglom, in A. N. Kolmogorov,Selected Papers. Mathematics and Mechanics (Nauka, Moscow, 1985), pp. 421–433 [in Russian].

    Google Scholar 

  8. R. H. Kraichnan,J. Fluid Mech. 62:305 (1974).

    Google Scholar 

  9. M. Nelkin,J. Stat. Phys. 54:1 (1989).

    Google Scholar 

  10. A. N. Kolmogorov,J. Fluid Mech. 13:82 (1962).

    Google Scholar 

  11. A. M. Obukhov,J. Fluid Mech. 13:77 (1962).

    Google Scholar 

  12. U. Frisch, P.-L. Sulem, and M. Nelkin,J. Fluid Mech. 87:719 (1978).

    Google Scholar 

  13. U. Frisch and G. Parisi, inTurbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, M. Ghil, R. Benzi, and G. Parisi, eds. (North-Holland, 1985), p. 84.

  14. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani,J. Phys. A 17:3521 (1984).

    Google Scholar 

  15. G. Paladin and A. Vulpiani,Phys. Rep. 156:147 (1987).

    Google Scholar 

  16. A. P. Siebesma, R. R. Tremblay, A. Erzan, and L. Pietronero,Physica A 156:613 (1989).

    Google Scholar 

  17. C. Meneveau and K. R. Sreenivasan,Nucl. Phys. B (Proc. Suppl.) 2:49 (1987).

    Google Scholar 

  18. C. Meneveau and K. R. Sreenivasan,Phys. Rev. Lett. 59:1424 (1987).

    Google Scholar 

  19. A. N. Kolmogorov,Dokl. Akad. Nauk SSSR 31:99 (1941).

    Google Scholar 

  20. A. M. Yaglom,Dokl. Akad. Nauk SSSR 166:49 (1966).

    Google Scholar 

  21. A. S. Gurvich and A. M. Yaglom,Phys. Fluids (Suppl.) 10:S59 (1967).

    Google Scholar 

  22. E. A. Novikov,Prikl. Math. Mech. 35:266 (1971).

    Google Scholar 

  23. B. B. Mandelbrot,J. Fluid Mech. 62:331 (1974).

    Google Scholar 

  24. V. S. Lutovinov and V. R. Chechetkin,Zh. Eksp. Teor. Fiz. 81:180 (1981).

    Google Scholar 

  25. R. H. Kraichnan,Phys. Fluids 8:575 (1965);J. Fluid Mech. 83:349 (1977).

    Google Scholar 

  26. A. Yoshizawa and M. Sakijama,J. Phys. Soc. Jpn. 44:1977 (1978); A. Yoshizawa,J. Phys. Soc. Jpn. 45:1734 (1978).

    Google Scholar 

  27. V. I. Belinicher and V. S. L'vov,Zh. Eksp. Teor. Fiz. 93:533 (1987).

    Google Scholar 

  28. A. V. Tur and V. V. Yanovskii,Dokl. Akad. Nauk SSSR 299:873 (1988).

    Google Scholar 

  29. E. D. Siggia,Phys. Rev. A 15:1730 (1977);17:1166 (1978).

    Google Scholar 

  30. K. Ohkitani and M. Yamada,Prog. Theor. Phys. 81:329 (1989).

    Google Scholar 

  31. C. Meneveau and K. R. Sreenivasan,J. Fluid Mech. (in press).

  32. B. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    Google Scholar 

  33. E. A. Novikov and R. W. Stewart,Izv. Akad. Nauk SSSR Ser. Geophys. 3:408 (1964).

    Google Scholar 

  34. A. Aharony,Physica D 38:1 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chechetkin, V.R., Lutovinov, V.S. & Turygin, A.Y. Multifractal structure of fully developed hydrodynamic turbulence. I. Kolmogorov's third hypothesis revisited. J Stat Phys 61, 573–588 (1990). https://doi.org/10.1007/BF01027292

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027292

Key words

Navigation