Biotechnology Letters

, Volume 9, Issue 4, pp 293–298 | Cite as

Batch and membrane-assisted cell recycling in ethanol production byCandidashehatae

  • Hassan K. Sreenath
  • Thomas W. Jeffries


During xylose fermentation byCandidashehatae ATCC 22984 with batch cell recycling, the volumetric ethanol fermentation rate increased two-fold, and the xylitol production rate increased three-fold as the cell density increased to ten-fold. In continuous fermentation with membrane-assisted cell recycle, the fermentation rates increased almost linearly with increasing agitation rates up to 300 rpm. The maximum continuous ethanol production rates obtained with 90 and 200 g L−1 xylose were respectively 2.4 and 4.4 g L−1h−1. The cell density was 65–70 g (dry wt) L−1. Ethanol yields ranged from 0.26 to 0.41 g g−1.


Fermentation Xylose Cell Density Production Rate Ethanol Production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bloomfield, D.K. and Block, K. (1960). J Biol. Chem. 235:337–345.Google Scholar
  2. Bruinenberg, P.M., de Bot, P.H.M., Dijken, J.P. and Scheffers, W.A. (1984). Appl. Microbiol. Biotechnol. 19:256–260.Google Scholar
  3. Cheryan, M. and Mehaia, M.A. (1983). Biotech. Lett., 5:519–524.Google Scholar
  4. Cheryan, M. and Mehaia, M.A. (1984a) In: McGregor, W.C. (Ed.) “Membrane Separations in Biotechnology” (New York, Marcel-Dekker).Google Scholar
  5. Cheryan, M. and Mehaia, M.A. (1984b). Process Biochem. Dec., 204–208.Google Scholar
  6. Cooper, C.M., Fernstrom, G.A. and Miller, S.A. (1944). Indus. Eng. Chem. 36:504–509.Google Scholar
  7. Damiano, D., Shin, C.-S., Ju, N.-L. and Wang, S.S. (1985). Appl. Microbiol. Biotech. 21:69.Google Scholar
  8. du Preez, J.C. and van der Walt, J.P. (1983). Biotechnol. Lett. 5:357–362.Google Scholar
  9. du Preez, J.C., Prior, B.A. and Monteiro, M.T. (1984). Appl. Microbiol. Biotechnol. 19:261–266.Google Scholar
  10. du Preez, J.C. and Prior, B.A. (1985). Biotechnol. Lett. 7:241–246.Google Scholar
  11. Ghose, T.K. and Tyagi, R.D. (1979). Biotechnol. Bioeng. 21:1387–1400.Google Scholar
  12. Hayshida, S., Feng, D.D., and Hongo, M. (1975). Agr. Biol. Chem. 39:1025–1031.Google Scholar
  13. Henkeli, A.D. and Lie, S. (1973). J. Inst. Brew. 79:51–61.Google Scholar
  14. Jeffries, T.W. (1984). Biotechnol. Lett. 6:777–782.Google Scholar
  15. Jeffries, T.W. (1985). Comparisons of alternatives for the fermentation of pentoses to ethanol. In: Lowenstein, M.Z. (Ed.). Energy Applications of Biomass. Elsevier, London, New York, pp. 231–252.Google Scholar
  16. Jeffries, T.W. (1986). Biotechnol. Bioeng. Symp. 15:149–166.Google Scholar
  17. Moreno, M., and Goma, G. (1979). Effect of cell recycling. Biotechnol. Lett. 1:483–488.Google Scholar
  18. Rogers, P.L., Lees, K.J., Shotnicki, M.L., and Tribe, D.E. (1982). Adv. Biochem. Eng., 23:37–84.Google Scholar
  19. Slininger, P.J., Bothast, R.J., Black, L.T. and McGhee, J.E. (1982). Biotechnol. Bioeng. 24:2241–2251.Google Scholar
  20. Slininger, P.J., Bothast, R.J., Okos, M.R. and Ladisch, M.R. (1985). Biotechnol. Lett. 7:431–346.Google Scholar
  21. Sreenath, H.K., Chapman, T.W. and Jeffries, T.W. (1986). Appl. Microbiol. Biotechnol. 24:294–299.Google Scholar
  22. Watson, K. (1982). Biotech. Lett. 4:397–402.Google Scholar

Copyright information

© Kluwer Academic Publishers 1987

Authors and Affiliations

  • Hassan K. Sreenath
    • 1
  • Thomas W. Jeffries
    • 2
  1. 1.Department of Chemical EngineeringUniversity of WisconsinMadison
  2. 2.USDA Forest Products LaboratoryMadison

Personalised recommendations