Biotechnology Letters

, Volume 9, Issue 4, pp 293–298 | Cite as

Batch and membrane-assisted cell recycling in ethanol production byCandidashehatae

  • Hassan K. Sreenath
  • Thomas W. Jeffries


During xylose fermentation byCandidashehatae ATCC 22984 with batch cell recycling, the volumetric ethanol fermentation rate increased two-fold, and the xylitol production rate increased three-fold as the cell density increased to ten-fold. In continuous fermentation with membrane-assisted cell recycle, the fermentation rates increased almost linearly with increasing agitation rates up to 300 rpm. The maximum continuous ethanol production rates obtained with 90 and 200 g L−1 xylose were respectively 2.4 and 4.4 g L−1h−1. The cell density was 65–70 g (dry wt) L−1. Ethanol yields ranged from 0.26 to 0.41 g g−1.


Fermentation Xylose Cell Density Production Rate Ethanol Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bloomfield, D.K. and Block, K. (1960). J Biol. Chem. 235:337–345.Google Scholar
  2. Bruinenberg, P.M., de Bot, P.H.M., Dijken, J.P. and Scheffers, W.A. (1984). Appl. Microbiol. Biotechnol. 19:256–260.Google Scholar
  3. Cheryan, M. and Mehaia, M.A. (1983). Biotech. Lett., 5:519–524.Google Scholar
  4. Cheryan, M. and Mehaia, M.A. (1984a) In: McGregor, W.C. (Ed.) “Membrane Separations in Biotechnology” (New York, Marcel-Dekker).Google Scholar
  5. Cheryan, M. and Mehaia, M.A. (1984b). Process Biochem. Dec., 204–208.Google Scholar
  6. Cooper, C.M., Fernstrom, G.A. and Miller, S.A. (1944). Indus. Eng. Chem. 36:504–509.Google Scholar
  7. Damiano, D., Shin, C.-S., Ju, N.-L. and Wang, S.S. (1985). Appl. Microbiol. Biotech. 21:69.Google Scholar
  8. du Preez, J.C. and van der Walt, J.P. (1983). Biotechnol. Lett. 5:357–362.Google Scholar
  9. du Preez, J.C., Prior, B.A. and Monteiro, M.T. (1984). Appl. Microbiol. Biotechnol. 19:261–266.Google Scholar
  10. du Preez, J.C. and Prior, B.A. (1985). Biotechnol. Lett. 7:241–246.Google Scholar
  11. Ghose, T.K. and Tyagi, R.D. (1979). Biotechnol. Bioeng. 21:1387–1400.Google Scholar
  12. Hayshida, S., Feng, D.D., and Hongo, M. (1975). Agr. Biol. Chem. 39:1025–1031.Google Scholar
  13. Henkeli, A.D. and Lie, S. (1973). J. Inst. Brew. 79:51–61.Google Scholar
  14. Jeffries, T.W. (1984). Biotechnol. Lett. 6:777–782.Google Scholar
  15. Jeffries, T.W. (1985). Comparisons of alternatives for the fermentation of pentoses to ethanol. In: Lowenstein, M.Z. (Ed.). Energy Applications of Biomass. Elsevier, London, New York, pp. 231–252.Google Scholar
  16. Jeffries, T.W. (1986). Biotechnol. Bioeng. Symp. 15:149–166.Google Scholar
  17. Moreno, M., and Goma, G. (1979). Effect of cell recycling. Biotechnol. Lett. 1:483–488.Google Scholar
  18. Rogers, P.L., Lees, K.J., Shotnicki, M.L., and Tribe, D.E. (1982). Adv. Biochem. Eng., 23:37–84.Google Scholar
  19. Slininger, P.J., Bothast, R.J., Black, L.T. and McGhee, J.E. (1982). Biotechnol. Bioeng. 24:2241–2251.Google Scholar
  20. Slininger, P.J., Bothast, R.J., Okos, M.R. and Ladisch, M.R. (1985). Biotechnol. Lett. 7:431–346.Google Scholar
  21. Sreenath, H.K., Chapman, T.W. and Jeffries, T.W. (1986). Appl. Microbiol. Biotechnol. 24:294–299.Google Scholar
  22. Watson, K. (1982). Biotech. Lett. 4:397–402.Google Scholar

Copyright information

© Kluwer Academic Publishers 1987

Authors and Affiliations

  • Hassan K. Sreenath
    • 1
  • Thomas W. Jeffries
    • 2
  1. 1.Department of Chemical EngineeringUniversity of WisconsinMadison
  2. 2.USDA Forest Products LaboratoryMadison

Personalised recommendations