Skip to main content
Log in

A model for swelling rock in tunnelling

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary

In this paper, the phenomenon of swelling in tunnelling will be treated as a hydraulic-mechanical coupled process. This approach allows one to model the observed floor heaves realistically, i. e. without the prediction inevitable in the previous models of movements at the tunnel crown and walls. Furthermore, the development of heave and pressure over the course of time can be studied. The absence of deformations above the floor level is here interpreted as a consequence of the hydraulic boundary conditions. Besides the importance of seepage flow, the influence of rock strength is illustrated. Swelling rock is considered as an elastoplastic material. This allows one to predict the often large haaves of a tunnel floor as observed in situ. According to the numerical results, the area of practically relevant swelling strains extends as far as the plastic zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anagnostou, G., (1991): Untersuchungen zur Statik des Tunnelbaus in quellfähigem Gebirge. Dissertation 9553, Swiss Federal Institute of Technology, Zurich.

    Google Scholar 

  • Anagnostou, G. (1992). Importance of unsaturated flow in predicting the deformations around tunnels in swelling rock. In: Mermoud et al. (eds.) Porous or fractured unsaturated media: Transports and behaviour. Swiss Federal Institute of Technology of Lausanne, University of Neuchatel, 343–359.

  • Barenblatt, G. I., Zheltov, I. P., Kochina, I. N. (1960): Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [Strata]. PMM 24 (5), 852–864.

    Google Scholar 

  • Bellwald, Ph., Einstein, H. H. (1987): Elasto-plastic constitutive model. In: Herget, G., Vongpaisal, S. (eds.) Proc., 6th Int. Congress on Rock Mechanics, Montreal. Vol. 3, Balkema, Rotterdam, 1489–1492.

    Google Scholar 

  • Biot, M. A. (1941): General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–165.

    Google Scholar 

  • Chenevert, M. E. (1969): Adsorptive pore pressures of argillaceous rocks. In: Proc., 11th AIME-Symposium, Rock Mechanics from Theory to Practice, 599–627.

  • Desai, C. S., Li, G. C. (1983): A residual flow procedure and application for free surface flow in porous media. Adv. Water Res. 6, 27–35.

    Google Scholar 

  • Einstein, H. H., Bischoff, N., Hofmann, E., (1972): Verhalten von Stollensohlen in quellendem Mergel. In: Grob, H., Kovári, K. (eds.) Int. Symposium on Underground Openings, Lucerne. Swiss Soc. for Soil Mech. and Found. Engng., Zurich, 296–319.

    Google Scholar 

  • Fecker, E., Wullschläger, D. (1991): Geotechnische Meßeinrichtungen in der Untersuchungsstrecke U1 des Freudensteintunnels, Meßergebnisse, ibw Ingenieurbauwerke 7, 195–213.

    Google Scholar 

  • Fröhlich, B. (1986): Anisotropes Quellverhalten diagenetisch verfestigter Tonsteine. Veröff. Institut f. Bodenmechanik und Felsmechanik, Universität Fridericiana, Karlsruhe, 99.

    Google Scholar 

  • Grob., H. (1972) Schwelldruck im Belchentunnel. In: Grob, H., Kovári, K. (eds.) Int. Symposium on Underground Openings, Lucerne. Swiss Soc. for Soil Mech. and Found. Engng., Zurich, 99–119.

    Google Scholar 

  • Gysel, M. (1977): A contribution, to the design of a tunnel lining in swelling rock. Rock Mech. 10, 55–71.

    Google Scholar 

  • Gysel, M. (1987): Design of tunnels in swelling rock, Rock Mech. Rock Engng. 20, 219–242.

    Google Scholar 

  • Holtz, W. G., Gibbs, H. J. (1956): Engineering properties of expansive clays. Trans. ASCE 121, Paper 2814, 641–663.

    Google Scholar 

  • Koiter, W. T. (1953): Stress-strain relations uniqueness and variational theorems for elasto-plastic materials with a singular yield surface. Q. Appl. Mathem. 11, 350–354.

    Google Scholar 

  • Kovári, K., Madsen, F. T., Amstad, Ch. (1981): Tunnelling with yielding support in swelling rocks. In: Akai, K. (ed.) Proc., Int. Symposium, on Weak Rock, Tokyo. Balkema, Rotterdam, 1019–1026.

    Google Scholar 

  • Kovári, K., Amstad, Ch., Anagnostou., G. (1987): Tunnelbau in quellfähigem Gebirge. Mitt. Schweizer. Ges. Boden-Felsmechanik 115.

  • Kovári, K., Amstad, Ch., Anagnostou, G. (1988): Design/construction methods—Tunnelling in swelling rocks. In: Cundall et al. (eds.) Key questions in rock mechanics. Proc., 29th U. S. Symposium. Balkema, Rotterdam, 17–32.

    Google Scholar 

  • Lombardi, G. (1984): Underground openings in swelling rock. In: Proc., 1st National Conference on Case Histories in Geotechnical Engineering, Lahore.

  • Madsen, F. T. (1979): Determination of the swelling pressure of claystones and marlstones using mineralogical data. In: Proc., 4th Congress ISRM, Montreux, vol. 1. Balkema, Rotterdam, 237–241.

    Google Scholar 

  • Marsily, G. (1986): Quantitative hydrogeology. Groundwater hydrology for engineers. Academic Press, London.

    Google Scholar 

  • Pressel, W., Kauffmann, J. (1960): Der Bau des Hauensteintunnels auf der Schweizerischen Centralbahn. Bahnmaier's Buchhandlung, Basel.

    Google Scholar 

  • Terzaghi, K. (1925): Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke, Leipzig.

    Google Scholar 

  • Terzaghi, K. (1946): Rock defects and loads on tunnel supports. In: Proctor, R. V., White, T. (eds.) Rock tunneling with steel supports. Commercial Shearing and Stamping Company, Youngstown, Ohio.

    Google Scholar 

  • Vardar, M., Fecker, E. (1984): Theorie und Praxis der Beherrschung löslicher und quellender Gesteine im Felsbau. Felsbau, 2, 91–99.

    Google Scholar 

  • Wiesmann, E. (1914): Über die Stabilität von Tunnelmauerwerk unter Berücksichtigung der Erfahrungen beim Bau des Hauenstein-Basistunnels. Schweizer. Bauzeitung 64, 27–32.

    Google Scholar 

  • Wittke, W. (1978): Grundlagen für die Bemessung und Ausführung von Tunnels in quellendem Gebirge und ihre Anwendung beim Bau der Wendeschleife der S-Bahn Stuttgart. Veröff. Institut f. Grundbau, Bodenmech., Felsmech., Verkehrswasserbau, RWTH, Aachen, vol. 6.

    Google Scholar 

  • Wittke, W., Rissler, P. (1976): Bemessung der Auskleidung von Hohlräumen in quellendem Gebirge nach der Finite-Element-Methode. Veröff. Institut f. Grundbau, Bodenmech., Felsmech., Verkehrswasserbau, RWTH, Aachen, vol. 2, 7–46.

    Google Scholar 

  • Zienkiewicz, O. C. (1985) Numerical modelling and geomechanics (soil-rockconcrete). In: Bazant, Z. (ed.) Mechanics of Geomaterials. J. Wiley, New York, 471–499.

    Google Scholar 

  • Zienkiewicz, O. C., Taylor, R. L. (1989): The finite element method. 4th ed., McGraw-Hill, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anagnostou, G. A model for swelling rock in tunnelling. Rock Mech Rock Engng 26, 307–331 (1993). https://doi.org/10.1007/BF01027115

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027115

Keywords

Navigation