Rock Mechanics and Rock Engineering

, Volume 26, Issue 4, pp 307–331 | Cite as

A model for swelling rock in tunnelling

  • G. Anagnostou


In this paper, the phenomenon of swelling in tunnelling will be treated as a hydraulic-mechanical coupled process. This approach allows one to model the observed floor heaves realistically, i. e. without the prediction inevitable in the previous models of movements at the tunnel crown and walls. Furthermore, the development of heave and pressure over the course of time can be studied. The absence of deformations above the floor level is here interpreted as a consequence of the hydraulic boundary conditions. Besides the importance of seepage flow, the influence of rock strength is illustrated. Swelling rock is considered as an elastoplastic material. This allows one to predict the often large haaves of a tunnel floor as observed in situ. According to the numerical results, the area of practically relevant swelling strains extends as far as the plastic zone.


Boundary Condition Civil Engineer Plastic Zone Previous Model Couple Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anagnostou, G., (1991): Untersuchungen zur Statik des Tunnelbaus in quellfähigem Gebirge. Dissertation 9553, Swiss Federal Institute of Technology, Zurich.Google Scholar
  2. Anagnostou, G. (1992). Importance of unsaturated flow in predicting the deformations around tunnels in swelling rock. In: Mermoud et al. (eds.) Porous or fractured unsaturated media: Transports and behaviour. Swiss Federal Institute of Technology of Lausanne, University of Neuchatel, 343–359.Google Scholar
  3. Barenblatt, G. I., Zheltov, I. P., Kochina, I. N. (1960): Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [Strata]. PMM 24 (5), 852–864.Google Scholar
  4. Bellwald, Ph., Einstein, H. H. (1987): Elasto-plastic constitutive model. In: Herget, G., Vongpaisal, S. (eds.) Proc., 6th Int. Congress on Rock Mechanics, Montreal. Vol. 3, Balkema, Rotterdam, 1489–1492.Google Scholar
  5. Biot, M. A. (1941): General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–165.Google Scholar
  6. Chenevert, M. E. (1969): Adsorptive pore pressures of argillaceous rocks. In: Proc., 11th AIME-Symposium, Rock Mechanics from Theory to Practice, 599–627.Google Scholar
  7. Desai, C. S., Li, G. C. (1983): A residual flow procedure and application for free surface flow in porous media. Adv. Water Res. 6, 27–35.Google Scholar
  8. Einstein, H. H., Bischoff, N., Hofmann, E., (1972): Verhalten von Stollensohlen in quellendem Mergel. In: Grob, H., Kovári, K. (eds.) Int. Symposium on Underground Openings, Lucerne. Swiss Soc. for Soil Mech. and Found. Engng., Zurich, 296–319.Google Scholar
  9. Fecker, E., Wullschläger, D. (1991): Geotechnische Meßeinrichtungen in der Untersuchungsstrecke U1 des Freudensteintunnels, Meßergebnisse, ibw Ingenieurbauwerke 7, 195–213.Google Scholar
  10. Fröhlich, B. (1986): Anisotropes Quellverhalten diagenetisch verfestigter Tonsteine. Veröff. Institut f. Bodenmechanik und Felsmechanik, Universität Fridericiana, Karlsruhe, 99.Google Scholar
  11. Grob., H. (1972) Schwelldruck im Belchentunnel. In: Grob, H., Kovári, K. (eds.) Int. Symposium on Underground Openings, Lucerne. Swiss Soc. for Soil Mech. and Found. Engng., Zurich, 99–119.Google Scholar
  12. Gysel, M. (1977): A contribution, to the design of a tunnel lining in swelling rock. Rock Mech. 10, 55–71.Google Scholar
  13. Gysel, M. (1987): Design of tunnels in swelling rock, Rock Mech. Rock Engng. 20, 219–242.Google Scholar
  14. Holtz, W. G., Gibbs, H. J. (1956): Engineering properties of expansive clays. Trans. ASCE 121, Paper 2814, 641–663.Google Scholar
  15. Koiter, W. T. (1953): Stress-strain relations uniqueness and variational theorems for elasto-plastic materials with a singular yield surface. Q. Appl. Mathem. 11, 350–354.Google Scholar
  16. Kovári, K., Madsen, F. T., Amstad, Ch. (1981): Tunnelling with yielding support in swelling rocks. In: Akai, K. (ed.) Proc., Int. Symposium, on Weak Rock, Tokyo. Balkema, Rotterdam, 1019–1026.Google Scholar
  17. Kovári, K., Amstad, Ch., Anagnostou., G. (1987): Tunnelbau in quellfähigem Gebirge. Mitt. Schweizer. Ges. Boden-Felsmechanik 115.Google Scholar
  18. Kovári, K., Amstad, Ch., Anagnostou, G. (1988): Design/construction methods—Tunnelling in swelling rocks. In: Cundall et al. (eds.) Key questions in rock mechanics. Proc., 29th U. S. Symposium. Balkema, Rotterdam, 17–32.Google Scholar
  19. Lombardi, G. (1984): Underground openings in swelling rock. In: Proc., 1st National Conference on Case Histories in Geotechnical Engineering, Lahore.Google Scholar
  20. Madsen, F. T. (1979): Determination of the swelling pressure of claystones and marlstones using mineralogical data. In: Proc., 4th Congress ISRM, Montreux, vol. 1. Balkema, Rotterdam, 237–241.Google Scholar
  21. Marsily, G. (1986): Quantitative hydrogeology. Groundwater hydrology for engineers. Academic Press, London.Google Scholar
  22. Pressel, W., Kauffmann, J. (1960): Der Bau des Hauensteintunnels auf der Schweizerischen Centralbahn. Bahnmaier's Buchhandlung, Basel.Google Scholar
  23. Terzaghi, K. (1925): Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke, Leipzig.Google Scholar
  24. Terzaghi, K. (1946): Rock defects and loads on tunnel supports. In: Proctor, R. V., White, T. (eds.) Rock tunneling with steel supports. Commercial Shearing and Stamping Company, Youngstown, Ohio.Google Scholar
  25. Vardar, M., Fecker, E. (1984): Theorie und Praxis der Beherrschung löslicher und quellender Gesteine im Felsbau. Felsbau, 2, 91–99.Google Scholar
  26. Wiesmann, E. (1914): Über die Stabilität von Tunnelmauerwerk unter Berücksichtigung der Erfahrungen beim Bau des Hauenstein-Basistunnels. Schweizer. Bauzeitung 64, 27–32.Google Scholar
  27. Wittke, W. (1978): Grundlagen für die Bemessung und Ausführung von Tunnels in quellendem Gebirge und ihre Anwendung beim Bau der Wendeschleife der S-Bahn Stuttgart. Veröff. Institut f. Grundbau, Bodenmech., Felsmech., Verkehrswasserbau, RWTH, Aachen, vol. 6.Google Scholar
  28. Wittke, W., Rissler, P. (1976): Bemessung der Auskleidung von Hohlräumen in quellendem Gebirge nach der Finite-Element-Methode. Veröff. Institut f. Grundbau, Bodenmech., Felsmech., Verkehrswasserbau, RWTH, Aachen, vol. 2, 7–46.Google Scholar
  29. Zienkiewicz, O. C. (1985) Numerical modelling and geomechanics (soil-rockconcrete). In: Bazant, Z. (ed.) Mechanics of Geomaterials. J. Wiley, New York, 471–499.Google Scholar
  30. Zienkiewicz, O. C., Taylor, R. L. (1989): The finite element method. 4th ed., McGraw-Hill, London.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • G. Anagnostou
    • 1
  1. 1.ETH HönggerbergSwiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations