Set-Valued Analysis

, Volume 2, Issue 1–2, pp 259–274 | Cite as

Miscellaneous incidences of convergence theories in optimization and nonlinear analysis I: Behavior of solutions

  • Jean-Paul Penot


We examine some connections between convergence theories and optimization. In particular we study the Lipschitzian character of the infimal value function with respect to variations of the objective function. We also study the approximate solution multifunction for convex and nonconvex objective functions.

Mathematics Subject Classifications (1991)

54C60 52A41 49J45 49J52 54E55 

Key words

Approximate minimization bounded hemiconvergence marginal function minimizer stable function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asplund, E. and Rockafellar, R. T.: Gradients of convex functions,Trans. Amer. Math. Soc. 139 (1969), 443–467.Google Scholar
  2. 2.
    Attouch, H.:Variational Convergence for Functions and Operators, Pitman, Boston, 1984.Google Scholar
  3. 3.
    Attouch, H., Azé, D. and Beer, G.: On some inverse stability problems for the epigraphical sum, Preprint (1989), to appear inJ. Nonlinear Anal.Google Scholar
  4. 4.
    Attouch, H., Lucchetti, R. and Wets, R. J.-B.: The topology of the ρ-Hausdorff distance,Annal. Mat. Pura Appl. 4 160 (1991), 303–320.Google Scholar
  5. 5.
    Attouch, H., Moudafi, A., and Riahi, H.: Quantitative stability analysis for maximal monotone operators and semi-groups of contractions,Sem. Anal. Conv. Montpellier 9 (1991), 1–38.Google Scholar
  6. 6.
    Attouch, H., Ndoutoumé, J.-L., and Théra, M.: Epigraphical convergence of functions and convergence of their derivatives in Banach spaces,Sém. Anal. Convex. Montpellier, Exposé no. 9, 1990.Google Scholar
  7. 7.
    Attouch, H. and Wets, R. J.-B.: Epigraphical analysis, in H. Attouchet al. (eds),Analyse non linéaire, Gauthier-Villars, Paris, 1989, pp. 73–100.Google Scholar
  8. 8.
    Attouch, H. and Wets, R. J.-B.: Isometries for the Legendre-Fenchel transform,Trans. Amer. Math. Soc. 296 (1986), 33–60.Google Scholar
  9. 9.
    Attouch, H. and Wets, R. J.-B.: Quantitative stability of variational systems: I. The epigraphical distance,Trans. Amer. Math. Soc. 328 (2) (1992), 695–729.Google Scholar
  10. 10.
    Attouch, H. and Wets, R. J.-B.: Quantitative stability of variational systems: II. A framework for nonlinear conditioning,SIAM J. Optim. (1992).Google Scholar
  11. 11.
    Attouch, H. and Wets, R. J.-B.: Quantitative stability of variational systems: III. ɛ-approximate solutions, Preprint, Oct. 1987. IIASA Laxenburg, Austria.Google Scholar
  12. 12.
    Aubin, J.-P. and Ekeland, I.:Applied Functional Analysis, Wiley-Interscience, New York, 1984.Google Scholar
  13. 13.
    Aubin, J.-P., and Frankowska, H.:Set-valued Analysis, Birkhäuser, Basel, 1990.Google Scholar
  14. 14.
    Azé, D. and Penot, J.-P.: Recent quantitative results about the convergence of convex sets and functions, in P.L. Papini (ed),Functional Analysis and Approximation, Pitagora, Bologna, 1989, pp. 90–110.Google Scholar
  15. 15.
    Azé, D. and Penot, J.-P.: Operations on convergent families of sets and functions,Optimization 21 (1990), 521–534.Google Scholar
  16. 16.
    Azé, D. and Penot, J.-P.: Qualitative results about the convergence of convex sets and convex functions, in A. D. Ioffeet al. (eds),Optimization and Nonsmooth Analysis, Pitman Research Notes 244, Longman, Harlow, 1992, pp. 1–25.Google Scholar
  17. 17.
    Azé, D. and Penot, J.-P.: The Joly topology and the Mosco-Beer topology revisited,Bull. Austral. Math. Soc. 48 (1993), 353–363.Google Scholar
  18. 18.
    Azé, D. and Rahmouni, A.: Lipschitz behavior of the Legendre-Fenchel transform, Preprint, Univ. Perpignan, 1992.Google Scholar
  19. 19.
    Azé, D. and Rahmouni, A.: Intrinsic bounds for Kuhn-Tucker points of perturbed convex programs, Preprint, Univ. Perpignan, 1992.Google Scholar
  20. 20.
    Beer, G.: On Mosco convergence of convex sets,Bull. Austral. Math. Soc. 38 (1988), 239–253.Google Scholar
  21. 21.
    Beer, G.: On the Young-Fenchel transform for convex functions,Proc. Amer. Math. Soc. 104 (1988), 1115–1123.Google Scholar
  22. 22.
    Beer, G.: Conjugate convex functions and the epi-distance topology,Proc. Amer. Math. Soc. 108 (1990), 117–126.Google Scholar
  23. 23.
    Beer, G.: Hyperspaces of a metric space: an overview, Preprint, 1990.Google Scholar
  24. 24.
    Castaing, Ch. and Valadier, M.:Convex Analysis and Measurable Multifunctions, Lecture Notes in Maths. 580, Springer-Verlag, Berlin, 1977.Google Scholar
  25. 25.
    Choquet, G.: Convergences.Ann. Inst. Fourier Grenoble 23 (1947–1948), 55–112.Google Scholar
  26. 26.
    Dolecki, S.: Convergence of minima in convergence spaces,Optimization 17 (1986), 553–572.Google Scholar
  27. 27.
    Federer, H.:Geometric Measure Theory, Springer-Verlag, Berlin, 1969.Google Scholar
  28. 28.
    Kato, T.:Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.Google Scholar
  29. 29.
    Klein, E. and Thompson, A.:Theory of Correspondences, Wiley, Toronto, 1984.Google Scholar
  30. 30.
    Moreau, J.-J.: Intersection of moving sets in a normed space,Math. Scand. 36 (1975), 159–173.Google Scholar
  31. 31.
    Mosco, U.: Convergence of convex sets and solutions of variational inequalities.Adv. Math. 3 (1969), 510–585.Google Scholar
  32. 32.
    Mosco, U.: On the continuity of the Young-Fenchel transformation,35 (1971), 518–535.Google Scholar
  33. 33.
    Penot, J.-P.: On regularity conditions in mathematical programming,Math. Prog. Study 19 (1982), 167–199.Google Scholar
  34. 34.
    Penot, J.-P.: Preservation of persistence and stability under intersections and operations, Part 1: Persistence,J. Opt. Th. Appl. 79(3) (1993), 525–550, Part 2: Stability,J. Opt. Th. App. 79(3) (1993), 551–561.Google Scholar
  35. 35.
    Penot, J.-P.: The cosmic Hausdorff topology, the bounded Hausdorff topology and continuity of polarity,Proc. Amer. Math. Soc. 113 (1991), 275–285.Google Scholar
  36. 36.
    Penot, J.-P.: Topologies and convergence on the set of convex functions,Nonlinear Anal. 18 (10) (1992), 905–916.Google Scholar
  37. 37.
    Penot, J.-P.: On the convergence of subdifferentials of convex functions,Nonlinear Anal. 21 (2) (1993), 87–101.Google Scholar
  38. 38.
    Penot, J.-P.: Second-order generalized derivatives: relationships with convergence notions, in F. Giannessi (ed),Nonsmooth Optimization: Methods and Applications, Erice, 1991, Gordon and Breach, Amsterdam, 1992, 303–322.Google Scholar
  39. 39.
    Penot, J.-P.: Conditioning convex and nonconvex problems, Preprint.Google Scholar
  40. 40.
    Penot, J.-P.: Regularization of dissipative operators, in preparation.Google Scholar
  41. 41.
    Robinson, S. M.: Generalized equations, in A. Bachem, M. Grotschel, and B. Korte (eds),Mathematical Programming, The State of the Art, Bonn 1982, Springer-Verlag, Berlin, pp. 346–367.Google Scholar
  42. 42.
    Rockafellar, R. T.:Conjugate Duality and Optimization, CBMS 16, SIAM, Philadelphia, 1974.Google Scholar
  43. 43.
    Sonntag, Y.: Convergence des suites d'ensembles, Monograph, to appear.Google Scholar
  44. 44.
    Walkup, D. and Wets, R.: Continuity of some convex cone valued mappings,Proc. Amer. Math. Soc. 18 (1967), 229–253.Google Scholar
  45. 45.
    Yamamuro, S.:Differential Calculus in Topological Linear Spaces, Lecture Notes in Math. 374, Springer-Verlag, Berlin, 1974.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Jean-Paul Penot
    • 1
  1. 1.Mathématiques, URA CNRS 1204Faculté des SciencesPAUFrance

Personalised recommendations