Advertisement

Biotechnology Letters

, Volume 10, Issue 7, pp 479–484 | Cite as

Effects of reduced oxygen on growth and antibiotic production inStreptomyces clavuligerus

  • P. K. Yegneswaran
  • M. R. Gray
  • D. W. S. Westlake
Article

Summary

The effects of reduced oxygen on growth and antibiotic production were studied in batch cultures ofStreptomyces clavuligerus in defined media. Antibiotic levels were unaffected by reduced oxygen for the first 50 hours of fermentation. After growth ceased, antibiotic concentrations dropped by a factor of about three under reduced oxygen, while the antibiotic concentration was stable when air was used. This suggests that enzymes for hydrolyzing antibiotics may be regulated by the aeration conditions.

Keywords

Oxygen Enzyme Fermentation Organic Chemistry Aeration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharonowitz, Y. and Demain, A. L. (1978).Antimicrob. Agents Chemother. 14, 159–164.Google Scholar
  2. Aharonowitz, Y. and Cohen, G. (1986). Bioactive Microbial Secondary Metabolites. In:Biotechnology: Potentials and Limitations, S. Silver, ed. pp 99–112, Heidelberg: Springer and Verlag.Google Scholar
  3. Bradford, M. (1976).Anal. Biochem. 72, 248–254.Google Scholar
  4. Brana, A. F., Hu, W-S., and Demain, A. L. (1983).Biotechnol. Lett. 5, 791–794.Google Scholar
  5. Brana, A. F., Wolfe, S., and Demain, A. L. (1985).Can. J. Microbiol. 31, 736–743.Google Scholar
  6. Brana, A. F., Wolfe, S., and Demain, A. L. (1986).Arch. Microbiol. 146, 46–51.Google Scholar
  7. Demain, A. L., Kupka, J., Shen, Y-Q., and Wolfe, S. (1982). Microbiological synthesis of β-lactam antibiotics. In:Trends in Antibiotic Research, H. Umezawa, A. L. Demain, T. Hata, and C. R. Hutchinson, eds., pp. 233–247, Tokyo: Japan Antibiotic Research Association.Google Scholar
  8. Drew, S. W., and Demain, A. L. (1977).Ann. Rev. Microbiol. 31, 343–356.Google Scholar
  9. Higgens, C. E., and Kastner, R. E. (1971).Int. J. Syst. Bacteriol. 21, 326–331.Google Scholar
  10. Ho, C. S., Smith, M. D., Shanahan, J. F. (1987).Adv. in Biochem. Eng. 35, 83–125.Google Scholar
  11. Hu, W-S., Brana, A. F., and Demain, A. L. (1984).Enzyme Microb. Technol. 6, 155–160.Google Scholar
  12. Kjaergaard, L., and Joergensen, B. B. (1980). The redox Potential, a hitherto seldom used parameter in fermentation system. In:Adv. Biotechnol. Vol I, Scientific and engineering principles, M. Moo-Young, ed., pp. 371–376, Toronto: Pergamon Press.Google Scholar
  13. Lebrihi, A., Germain, P., and Gerard, L. (1987).Appl. Microbiol. Biotechnol. 26, 130–135.Google Scholar
  14. Nivard, R. J. F., and Tesser, G. I. (1965). In:Comprehensive Biochemistry, M. Florkin and E. H. Stotz, eds., vol 6, pp 199–200 Amsterdam: Elsevier Publ. Co.Google Scholar
  15. Rollins, M. J., Jensen, S. E., Wolfe, S., and Westlake D. W. S. (1988(a)).Biotechnol. Lett. 10, 295–300.Google Scholar
  16. Rollins, M. J., Jensen, S. E., Wolfe, S., and Westlake D. W. S. (1988(b)). Submitted toEnzyme Microb. Technol. Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • P. K. Yegneswaran
    • 1
  • M. R. Gray
    • 1
  • D. W. S. Westlake
    • 2
  1. 1.Department of Chemical EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Department of MicrobiologyUniversity of AlbertaEdmontonCanada

Personalised recommendations