Skip to main content
Log in

Photoevolution of hydrogen during oxygenic photosynthesis of cyanobacteriumNostoc muscorum

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Summary

Nitrogen fixing cultures of the cyanobacteriumNostoc muscorum lacked hydrogen evolution but cultures infected with cyanophage N-1 showed significant hydrogen evolution and inactive nitrogenase, suggesting that nitrogenase activity is not responsible for the observed oxygen-resistant photoproduction of hydrogen. Significant oxygen-resistant hydrogen production by nitrate or ammonium assimilating cultures deficient in both nitrogenase and uptake hydrogenase activity supports this conclusion. These findings suggest a role of uptake hydrogenase in blocking the production of hydrogen during aerobic photosynthetic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolph, K.W. & Haselkorn, R. (1971).Virology, 46, 200–208

    Google Scholar 

  • Asada, Y., Tomizuka, N. & Kawamura, A. (1985).J. Ferment. Technol., 63, 85–90

    Google Scholar 

  • Bennemann, J.R. & Hallenbeck, P.C. (1978) In Schlegel, H.G. & Schneider, K. Ed.Hydrogenase-Their Catalytic Activity, Structure and Function, Erich Goltze K.G., Gottingen, 395–413

    Google Scholar 

  • Bennemann, J.R. & Weare, N.M. (1974)Science, 184, 174–175

    Google Scholar 

  • Daday, A., Lambert, G.R. & Smith, G.D. (1979)Biochem. J., 177, 139–144

    Google Scholar 

  • Eisbrenner, G., Distler, E., Floener, L. & Bothe, H. (1978)Arch. Microbiol., 118, 177–184

    Google Scholar 

  • Haystead, A., Robinson, R. & Stewart, W.D.P. (1970)Arch. Microbiol., 74, 235–243

    Google Scholar 

  • Houchins, J.P. & Burris, R.H. (1981 a)J. Bacteriol., 146, 209–214

    Google Scholar 

  • Houchins, J.P. & Burris, R.H. (1981 b)J. Bacteriol., 146, 215–221

    Google Scholar 

  • Houchins, J.P. & Burris, R.H. (1981 c)Plant Physiol., 68, 717–721

    Google Scholar 

  • Houchins, J.P. (1984)Biochim. Biophys. Acta, 768, 227–255

    Google Scholar 

  • Kumazawa, S. & Mitsui, A. (1985)Appl. Environ. Microbiol., 50, 287–291

    Google Scholar 

  • Kumar, A.P., Perraju, B.T.V.V. & Singh, H.N. (1986)New Phytol., 104, 115–120

    Google Scholar 

  • Lambert, G.R. & Smith, G.D. (1981)Biol. Rev., 56, 589–660

    Google Scholar 

  • Mackinney, G. (1941)J. Biol. Chem., 140, 315–322

    Google Scholar 

  • Peterson, R.B. & Wolk, C.P. (1978)Plant Physiol., 61, 688–691

    Google Scholar 

  • Safferman, R.S. & Morris, M.E. (1964)J. Bacteriol., 88, 771–775

    Google Scholar 

  • Stewart, W.D.P., Fitzgerald, G.P. & Burris, R.H. (1967)Proc. Natl. Acad. Sci. USA, 58, 2071–2078

    Google Scholar 

  • Tel-Or, E., Luijk, L.W. & Packer, L. (1977)FEBS Lett., 78, 49–52

    Google Scholar 

  • Xiankong, Z., Haskell, J.B., Tabita, F.R. & Van Baalen, C. (1983)J. Bacteriol., 156 (3), 1118–1122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Kashyap, A.K. Photoevolution of hydrogen during oxygenic photosynthesis of cyanobacteriumNostoc muscorum . Biotechnol Lett 10, 921–925 (1988). https://doi.org/10.1007/BF01027007

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027007

Keywords

Navigation