Journal of Materials Science

, Volume 19, Issue 9, pp 3005–3012 | Cite as

Glass formation and crystallization in the GeSe2-Sb2Te3 system

  • S. SuriÑach
  • M. D. Baro
  • M. T. Clavaguera-Mora
  • N. Clavaguera


The glass formation and crystallization of liquid-quenched (GeSe2)100-y/(Sb2Te3) y alloys was investigated by means of differential scanning calorimetry, X-ray diffraction and optical and scanning electron microscopy. By water quenching glasses are obtained from compositions in the range 5≲y≲30. Qualitative parametrization of glass-forming tendency gives, as best glass formers, alloys with y≅20. Crystallization on heating proceeds in one stage for glasses withy≲20 and in two stages for those with greater Sb2Te3 content. For compositions lying in the GeSe2 primary crystallization region crystals appear preferentially at the surface of the sample, but for the other compositions (24≲y≲30) the crystals emerge in the bulk and often develop in spherulitic or axialitic form.


Polymer Microscopy Electron Microscopy Scanning Electron Microscopy Crystallization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Turnbull,Contemp. Phys. 10 (1969) 473.Google Scholar
  2. 2.
    D. R. Uhlmann,J. Non-Cryst. Solids 7 (1972) 337Google Scholar
  3. 3.
    P. I. K. Onorato, D. R. Uhlmann andR. W. Hopper,ibid. 41 (1980) 189.Google Scholar
  4. 4.
    J. C. Phillips,ibid. 34 (1979) 153.Google Scholar
  5. 5.
    Idem, Phys. Status Solidi (b) 101 (1980) 473.Google Scholar
  6. 6.
    Idem, J. Non-Cryst. Solids 35/36 (1980) 1157.Google Scholar
  7. 7.
    B. T. Kolomiets,Phys. Status Solidi 7 (1964) 359, 713.Google Scholar
  8. 8.
    H. S. Chen,Rep. Prog. Phys. 43 (1980) 353.Google Scholar
  9. 9.
    J. Sestak, Proceedings of the 3rd ICTA, Vol. 2, edited by H. G. Wiedamann (Birkhäuser Verlag, Basel, 1972) p. 3.Google Scholar
  10. 10.
    D. W. Henderson,J. Non-Cryst. Solids 30 (1979) 301.Google Scholar
  11. 11.
    H. E. Kissinger,J. Res. Nat. Bur. Stand. 57 (1956) 217.Google Scholar
  12. 12.
    Idem, Anal. Chem. 29 (1957) 1702.Google Scholar
  13. 13.
    U. Köster,Acta Metall. 20 (1972) 1361.Google Scholar
  14. 14.
    U. Köster andU. Herold, in “Topics in Applied Physics: Glassy Metals I”, edited by H. J. Güntherodt and H. Beck (Springer-Verlag, Berlin, 1981) p. 225.Google Scholar
  15. 15.
    S. Suriñach, M. D. Baro andN. Clavaguera, in “9ème Journée d'Etudes des Equilibres entre Phases”, edited by M. T. Clavaguera-Mora (Universidad Autónoma de Barcelona, Bellaterra, 1983) p. 53.Google Scholar
  16. 16.
    W. Kauzmann,Chem. Rev. 43 (1948) 219.Google Scholar
  17. 17.
    S. Sakka andJ. D. Mackenzie,J. Non-Cryst. Solids 6 (1971) 145.Google Scholar
  18. 18.
    A. Hruby,Czech. J. Phys. B22 (1972) 1187.Google Scholar
  19. 19.
    M. T. Clavaguera-Mora, S. Suriñach, M. D. Baro andN. Clavaguera,J. Mater. Sci. 18 (1983) 1381.Google Scholar
  20. 20.
    S. Surinach, Ph.D. Thesis, Universidad Autónoma de Barcelona (1983).Google Scholar

Copyright information

© Chapman and Hall Ltd 1984

Authors and Affiliations

  • S. SuriÑach
    • 1
  • M. D. Baro
    • 1
  • M. T. Clavaguera-Mora
    • 1
  • N. Clavaguera
    • 2
  1. 1.Termología, Facultad de CienciasUniversidad Autónoma de BarcelonaBellaterra (Barcelona)Spain
  2. 2.Física del Estado Sólido, Facultad de FísicaUniversidad de Barcelona, DiagonalBarcelona-28Spain

Personalised recommendations