Journal of Chemical Ecology

, Volume 16, Issue 7, pp 2263–2275 | Cite as

Source and nature of disturbance-chemical system in crayfish

  • Brian A. Hazlett
Article

Abstract

The responses of crayfish to water from aquaria containing either undisturbed or disturbed animals were observed. The crayfishOrconectes propinquus andO. rusticus showed no response to disturbed-conspecific water. Individuals ofO. virilis respond not only to disturbed crayfish but to other taxa (the leechMacrobdella decora, the darterEtheostoma exile, and rock bassAmbloplites rupestris), but not to the painted turtleChrsymes picta. Additional tests indicated partial responses byO. virilis to ammonium and to a chemical or chemicals released from the green gland of crayfish. Ablation experiments indicated the antennules as the site of reception of the chemicals. Additional behavioral tests indicated that detection of the disturbance chemical(s) results in the crayfish showing low-level alert for more than 15 min, once an initial priming period has passed.

Key words

Disturbance semiochemical communication crayfish Orconectes propinquus O. rusticus O. virilis cross-taxa effects pheromone ammonium antennules green gland 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ameyaw-Akumfi, C.E. 1976. Some aspects of the breeding biology of crayfish. PhD thesis. University of Michigan, Ann Arbor, Michigan.Google Scholar
  2. Ameyaw-Akumfi, C.E., andHazlett, B.A. 1975. Sex recognition in the crayfishProcambarus clarkii.Science 190:1225–1226.PubMedGoogle Scholar
  3. Berrill, M., andArsenault, M. 1982. Spring breeding of a northern temperate crayfish,Orconectes rusticus.Can. J. Zool. 60:2641–2645.Google Scholar
  4. Capelli, G.M., andCapelli, J.F. 1980. Hybridization between crayfish of the genusOrconectes: Morphological evidence (Decapoda, Cambaridae).Crustaceana 39:121–132.Google Scholar
  5. Capelli, G.M., andMagnuson, J.J. 1983. Morphoedaphic and biogeographic analysis of crayfish distribution in northern Wisconsin.J. Crust. Biol. 2:486–492.Google Scholar
  6. Capelli, G.M., andMunjal, B.J. 1982. Aggressive interactions and resource competition in relation to species displacement among crayfish of the genusOrconectes.J. Crust. Biol. 2:486–492.Google Scholar
  7. Derby, C.D., andAtema, J. 1982a. Chemosensitivity of walking legs of the lobsterHomarus americanus neurophysiological response spectrum and thresholds.J. Exp. Biol. 98:303–315.Google Scholar
  8. Derby, C.D., andAtema, J. 1982b. Narrow-spectrum chemoreceptor cells in the walking legs of the lobsterHomarus americanus: Taste specialists.J. Comp. Physiol. 146:181–189.Google Scholar
  9. Gleeson, R.A. 1980. Pheromone communication in the reproductive behavior of the blue crab,Callinectes sapidus.Mar. Behav. Physiol. 7:119–134.Google Scholar
  10. Hazlett, B.A. 1983. Parental behavior in Decapod Crustacea, pp. 171–193,in S. Rebach and D. Dunham (eds.). Studies in Adaptation, The Behavior of Higher Crustacea. John Wiley & Sons, New York.Google Scholar
  11. Hazlett, B.A. 1985a. Chemical detection of sex and status inOrconectes virilis.J. Chem. Ecol. 11:181–189.Google Scholar
  12. Hazlett, B.A. 1985b. Disturbance pheromones in the crayfishOrconectes virilis.J. Chem. Ecol. 11:1695–1711.Google Scholar
  13. Hazlett, B.A. 1989. Additional sources of disturbance pheromone affecting the crayfish.Orconectes virilis.J. Chem. Ecol. 15:381–385.Google Scholar
  14. Heschl, A. 1989. Integration of “innate” and “learned” components within the IRME for mussel recognition in the European bitterlingRhodeus amarus (Bloch).Ethology 81:193–208.Google Scholar
  15. Katz, R.A., andShorey, H.H. 1979. In defense of the term “pheromone”.J. Chem. Ecol. 5:199–301.Google Scholar
  16. Karlson, P., andLusher, M. 1959. “Pheromone”: A new term fora class of biologically active substances.Nature 183:55–56.PubMedGoogle Scholar
  17. Kerambrun, P., andGuérin, J. 1984. L'électrophorèse dans l'étude des stress chez les invertébrés marins.Bull. Soc. Zool. Fr. 109:333–341.Google Scholar
  18. Lawrence, B.J., andSmith, R.J.F. 1989. Behavioral response of solitary fathead minnows,Pimephales promelas, to alarm substance.J. Chem. Ecol. 15:209–219.Google Scholar
  19. Norlund, D.A., andLewis, W.J. 1976. Terminology of chemical releasing stimuli in intraspecific and interspecific interactions.J. Chem. Ecol. 2:211–220.Google Scholar
  20. Petranka, J.W., Kats, L.B., andSih, A. 1987. Predator-prey interactions among fish and larval amphibians; use of chemical cues to detect predatory fish.Anim. Behav. 35:420–425.Google Scholar
  21. Quinn, J.P., andJanssen, J. 1989. Crayfish competition in southwestern Lake Michigan: A predator mediated bottleneck.J. Freshw. Ecol. 5:75–85.Google Scholar
  22. Rabeni, C.F. 1985. Resource partitioning by stream-dwelling crayfish: The influence of body size.Am. Midl. Nat. 113:20–29.Google Scholar
  23. Rittschof, D., andBrown, A.B. 1986. Modification of predatory snail chemotaxis by substances in bivalve prey odors.Malacologia 27:281–290.Google Scholar
  24. Rittschof, D., Keiber, D., andMerrill, C.L. 1984. Modification of response thesholds of newly hatched snails by odor exposure during development.Chem. Senses 9:181–192.Google Scholar
  25. Rose, R.D. 1986. Chemical detection of “self” and conspecifics by crayfish.J. Chem. Ecol. 12:271–276.Google Scholar
  26. Stemberger, R.S., andGilbert, J.J. 1987. Multiple-species induction of morphological defenses in the rotiferKetatella testudo.Ecology 68:370–378.Google Scholar
  27. Tierney, A.J., andDunham, D.W. 1982. Chemical communication in the reproductive isolation of the crayfishesOrconectes propinquus andOrconectes virilis (Decapoda, Cambaridae).J. Crust. Biol. 2:544–548.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Brian A. Hazlett
    • 1
    • 2
  1. 1.Department of BiologyUniversity of MichiganAnn Arbor
  2. 2.University of Michigan Biological StationPellston

Personalised recommendations