Hyperfine Interactions

, Volume 8, Issue 1–3, pp 229–238 | Cite as

NMR-on of182Ta and183Ta in Fe

  • A. L. Allsop
  • D. H. Chaplin
  • D. W. Murray
  • N. J. Stone


Nuclear magnetic resonance has been observed on radioactive182Ta and183Ta oriented at low temperature in an Fe host, by detection of the change in spatial anisotropy of γ-rays emitted during nuclear decay. By measuring the resonant frequencies of183Ta in four different applied magnetic fields the nuclear magnetic moment and hyperfine field have been deduced. These are:
$$|\mu \left( {{}^{183}Ta; I = \tfrac{\user2{7}}{\user2{2}}} \right)| = 2.28(3)\mu _{\rm N} and B_{hf} \left( {Ta\underline {Fe} at 0 K} \right) = - 67.2(1.3)T$$
. The spin of the ground state of182Ta has been determined asI=3 by comparing resonance results with those obtained in a thermal equilibrium nuclear orientation study. The ratio of the resonant frequencies observed for182Ta and183Ta at one applied field value yields a magnetic moment for the former of
$$|\mu \left( {{}^{182}Ta; I = \user2{3}} \right)| = 2.91(3)\mu _{\rm N} $$
. The spin lattice relaxation time for183TaFe (0.12 at% Ta) at 18 mK in an applied field of 0.5 T has been found to be 40(10) s.


Nuclear Magnetic Resonance Resonant Frequency Applied Field Applied Magnetic Field Hyperfine Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. de Jong, H. Postma and R. Spanhoff, Hyperfine Interactions 7 (1980) 465.Google Scholar
  2. [2]
    H.C. Benski, J. Berthier and J.L. Oddou, J. de Phys. 35 (1974) Colloque C1, p. 3.Google Scholar
  3. [3]
    J.C. Soares, K. Krien and K. Freitag, Hyperfine Interactions 1 (1975) 45.Google Scholar
  4. [4]
    N. Buttler, Thesis (University of Bonn, 1970) (Unpublished).Google Scholar
  5. [5]
    M. Kontani and J. Itoh, J. Phys. Soc. Jap. 22 (1967) 345.Google Scholar
  6. [6]
    G.N. Rao, Table of Hyperfine Fields, Hyperfine Interactions 7 (1979) 141.Google Scholar
  7. [7]
    M. Kopp and W.D. Brewer, Hyperfine Interactions 3 (1977) 321.Google Scholar
  8. [8]
    Table of Isotopes (7th ed.), eds. C.M. Lederer and V.S. Shirley (Wiley, New York, 1978).Google Scholar
  9. [9]
    A. Artna-Cohen, Nuclear Data Sheets 16 (1975) 267.Google Scholar
  10. [10]
    O. Nilsson, S. Hogberg, S.-E. Karlsson and G.M. El-Sayad, Nucl. Phys. A100 (1967) 351.Google Scholar
  11. [11]
    W.M. Doyle and R. Marrus, Nucl. Phys. 49 (1963) 449.Google Scholar
  12. [12]
    S.B. Patel, P.N. Tandon and K.P. Gopinathan, Phys. Rev. C14 (1976) 2027.Google Scholar
  13. [13]
    K.S. Krane, C.E. Olsen, S.S. Rosenblum and W.A. Steyert, Phys. Rev. C13 (1976) 1295.Google Scholar
  14. [14]
    K.S. Krane, C.E. Olsen, S.S. Rosenblum and W.A. Steyert, Phys. Rev. C12 (1975) 1999.Google Scholar
  15. [15]
    R. Müller and E.W. Weber, Z. Phys. A275 (1975) 305.Google Scholar
  16. [16]
    A.H. Reddoch and G.J. Ritter, Phys. Rev. 126 (1962) 1493.Google Scholar
  17. [17]
    V. Kaufman and J. Sugar, J. Opt. Soc. Amer. 61 (1971) 1693.Google Scholar
  18. [18]
    L.C. Erich, A.C. Gossard and R.L. Hartless, J. Chem. Phys. 59 (1973) 3911.Google Scholar
  19. [19]
    L.H. Bennett and J.I. Budnick, Phys. Rev. 120 (1960) 1812.Google Scholar
  20. [20]
    J. Sugar and V. Kaufman, Phys. Rev. C12 (1975) 1336.Google Scholar
  21. [21]
    S.G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk., 29 (1955, ed. 2, 1960) No. 16.Google Scholar
  22. [22]
    D. Prior, F. Boehm and S.G. Nilsson, Nucl. Phys. A110 (1968) 257.Google Scholar
  23. [23]
    H. Hübel, Fortschr. Phys. 25 (1977) 327.Google Scholar
  24. [24]
    C. Ekström, H. Rubinsztein and P. Möller, Phys. Scripta 14 (1976) 199.Google Scholar
  25. [25]
    R.A. Fox and N.J. Stone, Phys. Lett. A29 (1969) 341.Google Scholar
  26. [26]
    G.J. Perlow, W. Henning, D. Olson and G.L. Goodman, Phys. Rev. Lett. 23 (1969) 680.Google Scholar
  27. [27]
    F.E. Wagner and W. Potzel, in Hyperfine Interactions in Excited Nuclei, eds. G. Goldring and R. Kalish (Gordon and Breach, London, 1971), p. 681.Google Scholar
  28. [28]
    P.D. Johnston and N.J. Stone, J. Phys. C: Solid State Phys. 5 (1972) L303.Google Scholar
  29. [29]
    G.A. Gehring and H.C.W.L. Williams, J. Phys. F: Metal Phys. 4 (1974) 291.Google Scholar
  30. [30]
    P.D. Johnston, R.A. Fox and N.J. Stone, J. Phys. C: Solid State Phys. 5 (1972) 2077.Google Scholar
  31. [31]
    F. Hartmann-Boutron and D. Spanjaard, Compt. Rend. 268B (1969) 1260.Google Scholar
  32. [32]
    D. Spanjaard and F. Hartmann-Boutron, Solid State Commun. 8 (1970) 323.Google Scholar
  33. [33]
    F. Bacon, J.A. Barclay, W.D. Brewer, D.A. Shirley and J.E. Templeton, Phys. Rev. B5 (1972) 2397.Google Scholar
  34. [34]
    B.G. Turrell, Hyperfine Interactions 7 (1980) 429.Google Scholar
  35. [35]
    N.J. Stone, in Hyperfine Interactions in Excited Nuclei, eds. G. Goldring and R. Kalish (Gordon and Breach, London, 1971), p. 237.Google Scholar
  36. [36]
    A. Narath, in Hyperfine Interactions, ed. A.J. Freeman and R.B. Frankel (Academic Press, New York, 1967), p. 287.Google Scholar

Copyright information

© North-Holland Publishing Company 1980

Authors and Affiliations

  • A. L. Allsop
    • 1
  • D. H. Chaplin
    • 1
  • D. W. Murray
    • 1
  • N. J. Stone
    • 1
  1. 1.Mullard Cryomagnetic LaboratoryClarendon LaboratoryOxfordUK

Personalised recommendations