Advertisement

Biotechnology Letters

, Volume 8, Issue 6, pp 391–396 | Cite as

Enhanced stability of a 2μ-based recombinant plasmid in diploid yeast

  • David J. Mead
  • David C. J. Gardner
  • Stephen G. Oliver
Article

Summary

The stability of a 2μ-based recombinant plasmid, pJDB219, has been compared in glucose-limited chemostat cultures of two haploid strains ofSaccharomycescerevisiae and a diploid derived from them. The stability of the recombinant plasmid differed in the two haploid hosts but was greatest in the diploid. Enhanced stability in the diploid is probably a function of both the increased copy number and reduced selective burden of the plasmid.

Keywords

Organic Chemistry Bioorganic Chemistry Recombinant Plasmid Chemostat Culture Increase Copy Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beggs, J.D. (1978) Nature 275, 104–109Google Scholar
  2. Botstein, D. and Davis, R.W. (1982) In “The Molecular Biology of the Yeast Saccharomyces II. Metabolism and Gene Expression” (J.N. Strathern, E.W. Jones and J.R. Broach, eds.) Cold Spring Harbor Laboratory, New York, pp 607–636.Google Scholar
  3. Broach, J.R. (1981) Ibid.“ vol. I. pp 445–470.Google Scholar
  4. Brown, S.W., Sugden, D.A. and Oliver, S.G. (1984) J. Chem. Technol. Biotechnol. 34B, 116–120.Google Scholar
  5. Dobson, M.J., Futcher, A.B. and Cox, B.S. (1980) Curr. Genet. 2, 201–205.Google Scholar
  6. Esener, A.A., Roels, J.A., Kossen, N.W.F. and Roozenburg, J.W.H. (1981) Eur. J. Appl. Microbiol. Biotechnol. 13, 141–144.Google Scholar
  7. Hinnen, A., Hicks, J.B. and Fink, G.R. (1978) Proc. Nat. Acad. Sci. (USA) 75, 1929–1933.Google Scholar
  8. Jayaram, M., Li, Y.-Y. and Broach, J.R. (1983) Cell 34, 95–104.Google Scholar
  9. Jayaram, M., Sutton, A. and Broach, J.R. (1985) Mol. Cell. Biol. 5, 2466–2475.Google Scholar
  10. Kikuchi, Y. (1983) Cell 35, 487–493.Google Scholar
  11. Ludwig, J.R. II, Oliver, S.G. and McLaughlin, C.S. (1977) Biochem. Biophys. Res. Commun. 79, 16–23.Google Scholar
  12. Moser, H. (1958) Carnegie Inst. (Wash.): Publication No. 614.Google Scholar
  13. Murray, A.W. and Szostak, J.W. (1983) Cell 34, 961–970.Google Scholar
  14. Parent, S.A., Fenimore, C.M. and Bostian, K.A. (1985) Yeast 1, 83–138.Google Scholar
  15. Raeder, U. and Broda, P.M.A. (1984) Curr. Genet.8, 499–506.Google Scholar
  16. Spalding, A., Walters, K. and Tuite, M.F. (1986) 106th Meeting of the Soc. for Gen. Microbiol. Abstract P70, 89.Google Scholar
  17. Walmsley, R.M., Gardner, D.C.J. and Oliver, S.G. (1983) Molec. Gen. Genet. 192, 361–365.Google Scholar
  18. Williamson, D.H. (1985) Yeast 1, 1–14.Google Scholar

Copyright information

© Kluwer Academic Publishers 1986

Authors and Affiliations

  • David J. Mead
    • 1
  • David C. J. Gardner
    • 1
  • Stephen G. Oliver
    • 1
  1. 1.Department of Biochemistry and Applied Molecular BiologyUniversity of Manchester Institute of Science and TechnologyManchesterEngland

Personalised recommendations